Note on Definition of Length

This had occurred to me earlier, but I suppose I hadn't fully decided whether to bring it up until after our conversation yesterday. We had been discussing an appropriate and accurate definition of area, and in that discussion the definition of length came up, specifically, the part of the definition that says "from one end of the object to another." Here is the standard in Grade 1:
1.GM.2.2 Illustrate that the length of an object is the number of same-size units of length that, when laid end-to-end with no gaps or overlaps, reach from one end of the object to the other.

I had originally thought there might be some issue with this definition, since for example, the following would illustrate the "length" of a circle, since it is a measure "from one end of the object to another."

Figure 1: Does the length of the red line indicate the "length" of the circle?
This came up for me again and I decided to revisit it after we talked about area as "filling a shape" and that it was simply implied, similar to how length being end-to-end was implied. Also, the discussion about finding the perimeter of the key on a basketball court, and estimating its length using line segments made me rethink things. To illustrate further, by the definition in the standard above, the length of the S-curve below might be found by measuring the length of the red line, since it reaches from one end of the object to the other.

Figure 2: Does the length of the red line indicate the "length" of this curve?
Now, I also understand that students could measure the length of such a curve using a piece of string that they then straighten out, but I wonder if that is much more challenging than we give students credit for.

For example, do young children know that if a bent piece of wire is straightened, then there is an intrinsic quality of that piece of wire that stays the same, namely, its length? I
recall research (Van Hiele?) about how young children will think a shorter container holds less than a taller, because they cannot yet understand that the circumference of the container contributes to its volume as well. And I am also aware that there is a developmental stage involving understanding conservation of measure (for example area). So is there a similar developmental stage with "conservation" of length in the piece of string context?

I think the upshot is that a revision of standard 1.GM.2.2 might be needed that explicitly states that length is a measure of line segments (but perhaps not in that exact language-not sure). Once length of segments is established, students can discuss finding lengths of straight sides of objects, like finding lengths of sides of polygons. By the way, this could help remove ambiguity around the "length" of an object, as mentioned for example in the next standard (and possibly in others):
1.GM.2.3 Measure the same object/distance with units of two different lengths and describe how and why the measurements differ.
When stated this way, it isn't clear what the length of an object is; for example a student might argue that the length of the diagonal of a rectangle is the rectangle's "length," especially since it is the "longest" measure within the rectangle.

Figure 3: Is this the "length" of this object?
Furthermore, I think such a change would lead very nicely into a standard about approximating lengths of curves by measuring lengths of line segments that better and better approximate the curve.

Figure 4: When we know how to measure lengths of line segments, we can estimate the lengths of curves.

And this may get us closer to students developing an understanding of circumference in a more natural way, as desired.

Just some more food for thought.
Sincerely, CY

