Agenda- Part II

• Where We Are
• Available Resources
• Coming Soon Resources
• Feedback
Where We Are
Giving Oklahoma Students an Edge

Oklahoma Academic Standards & Assessments (2017-2018)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Standards</th>
<th>Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
<td>OAS (2018)</td>
<td>No state assessment</td>
</tr>
<tr>
<td>English Language Arts</td>
<td>OAS (2015) By Grade</td>
<td>OSTP: Grades 3-8, and CCRA Grade 11</td>
</tr>
<tr>
<td>Mathematics</td>
<td>OAS (2015) (includes standards by grade)</td>
<td>OSTP: Grades 3-8, and CCRA Grade 11</td>
</tr>
<tr>
<td>Science</td>
<td>OAS (2014)</td>
<td>OSTP: Grades 5, 8, and CCRA Grade 11</td>
</tr>
<tr>
<td>Social Studies</td>
<td>OAS (2014)*</td>
<td>High School American History Grades 10-12 (The state will not administer a U.S. History test in 2017-2018)</td>
</tr>
</tbody>
</table>

Click here to read our Plan
Shifts under ESSA

- Focus on growth along a continuum of learning
- Use of multiple measures for accountability
- Belief that all students can grow and all schools can improve
- Role of state assessment as part of a system of assessment
Growth Along a Continuum

Below Basic
Students have not performed at least at the Basic level

Basic
Students demonstrate partial mastery of essential knowledge and skills foundational to proficient level

Proficient
Students demonstrate mastery over grade-level subject matter and is ready for the next grade, course, or level

Advanced
Students demonstrate superior performance on challenging subject matter

Senate Bill 1197
Defined by OPI Score Ranges

<table>
<thead>
<tr>
<th>Grade/Content Tested</th>
<th>Form</th>
<th>Scaled Score Range</th>
<th>Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3 ELA</td>
<td>Spring</td>
<td>200 – 276</td>
<td>Below Basic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>277 – 299</td>
<td>Basic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 – 328</td>
<td>Proficient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>329 – 399</td>
<td>Advanced</td>
</tr>
<tr>
<td>Grade 3 Math</td>
<td>Spring</td>
<td>200 – 273</td>
<td>Below Basic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>274 – 299</td>
<td>Basic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 – 320</td>
<td>Proficient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>321 – 399</td>
<td>Advanced</td>
</tr>
<tr>
<td>Grade 4 ELA</td>
<td>Spring</td>
<td>200 – 274</td>
<td>Below Basic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>275 – 299</td>
<td>Basic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 – 330</td>
<td>Proficient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>331 – 399</td>
<td>Advanced</td>
</tr>
<tr>
<td>Grade 4 Math</td>
<td>Spring</td>
<td>200 – 272</td>
<td>Below Basic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>273 – 299</td>
<td>Basic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 – 321</td>
<td>Proficient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>322 – 399</td>
<td>Advanced</td>
</tr>
</tbody>
</table>

OPI Score Ranges differ by grade and content

OPI Score Ranges define performance levels

Source: Performance Lookup Table
OPIs Pin-Point Performance

- OPI Scores provide point-in-time information to support a focus on growth.
- OPI Scores are a more specific, nuanced measure of readiness to be on track by relating where a score is relative to a performance level.

OPI Example Score - 5th Grade Math

![Score Scale Diagram](image)
Oklahoma recognizes that a robust assessment system is tied closely to students’ learning and teachers’ instructional practices by valuing and promoting local, classroom-based formative assessment that help make student learning visible.
At the same time, that system should provide a strong summative assessment program that fits as a component within a multifaceted state, district and school accountability system. (ESSA Plan page 48-49)
Supporting the System

The OSDE supports a system of assessment by working with Oklahoma Educators and Stakeholders to:

• Ensure that state and federally required state tests delivered through the Oklahoma School Testing Program (OSTP) are effective and meaningful to families, districts, educators, and members of the community.
• Develop **Instructional resources** to support local formative and interim assessments through the **curriculum frameworks project** and **assessment guidance resources**

• Build and deliver **professional learning** through face-to-face and web-based resources to support **local assessment needs** and interpretation of state assessment data
Available Resources
For Educators

• Measured Progress Portal
• Assessment Guidance Webpage
• Curriculum Frameworks
• In Person and Web-Based Professional Development
Measured Progress Portal

https://oklahoma.measuredprogress.org/
New **Portal Tools**
OPI Mean and Range

Analyze ELA - OPI
OSTP, State, Final, Grade 03, 2018

<table>
<thead>
<tr>
<th>Population</th>
<th>Valid N</th>
<th>Mean</th>
<th>S.D.</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>54855</td>
<td>52371</td>
<td>286.7</td>
<td>29.6</td>
<td>201</td>
<td>399</td>
</tr>
</tbody>
</table>
OPI Score Distribution

<table>
<thead>
<tr>
<th>ELA-OPI</th>
<th>Frequency</th>
<th>Cumulative Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
<th>0%</th>
<th>2%</th>
<th>4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>277</td>
<td>1656</td>
<td>19266</td>
<td>3.2</td>
<td>36.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>1814</td>
<td>21080</td>
<td>3.5</td>
<td>40.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>1893</td>
<td>22973</td>
<td>3.6</td>
<td>43.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>1958</td>
<td>24931</td>
<td>3.7</td>
<td>47.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>1977</td>
<td>26908</td>
<td>3.8</td>
<td>51.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>291</td>
<td>2003</td>
<td>28911</td>
<td>3.8</td>
<td>55.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>2030</td>
<td>30941</td>
<td>3.9</td>
<td>59.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OPI Score Comparison Between Subjects
Subject Area Guidebooks

- Aligns to OSTP Goals under ESSA
- Unwraps OSTP Claims and provides state level data for comparison at local level
- Connects to Oklahoma’s Academic Standards and frameworks to support instructional insights
Table of Contents

- Introduction... 3
- About the Oklahoma School Testing Program (OSTP)... 4
- About OSTP Data... 5
- OSTP Performance Level Data: Are we on track?.. 7
- Oklahoma Performance Index Scores (OPI): Are we growing?............................... 9
- OSTP Reporting Category Indicators: Where are our strengths?............................ 11
- Reporting Category Analysis: Grade 3- Mathematics... 13
- Reporting Category Analysis: Grade 4 Mathematics... 15
- Reporting Category Analysis: Grade 5- Mathematics... 17
- Reporting Category Analysis: Grade 6- Mathematics... 19
- Reporting Category Analysis: Grade 7- Mathematics... 21
- Reporting Category Analysis: Grade 8- Pre-Algebra.. 23
- OSTP Glossary.. 25
Reporting Category Reported as a Confidence Level

Below Standard

Unlikely to demonstrate **proficient level KSAs** needed to be ready

At or Near Standard

Very likely to demonstrate **proficient level KSAs** needed to be ready

Above Standard

Confident they can demonstrate **proficient level KSAs** needed to be ready
OAS GR3- Numbers and Operations

- **3.N.1 Number Sense** - Compare and represent whole numbers up to 100,000 with an emphasis on place value and equality.

- **3.N.2 Number Operations** - Add and subtract multi-digit whole numbers; multiply with factors up to 10; represent multiplication and division in various ways; solve real-world and mathematical problems through the representation of related operations.

- **3.N.3 Fractions** - Understand meanings and uses of fractions in real-world and mathematical situations.

- **3.N.4 Money** - Determine the value of a set of coins or bills.
OSTP GR 3 Proficient Performance Level Descriptor (PLD)

• Students demonstrate mastery over appropriate grade-level subject matter and readiness for the next grade level. Students scoring at the Proficient level typically compare and order whole numbers. Students complete addition, subtraction, and multiplication problems and recognize the relationship between multiplication and division. Students construct and compare fractions using models. Students select the fewest number of coins for a given amount of money. Students determine rules to describe basic patterns. Students determine unknowns in equations and apply number properties. Students classify angles. Students sort three-dimensional figures and determine the perimeter of polygons. Students determine the area of two-dimensional figures. Students read and analyze length, temperature, and time. Students summarize a data set and analyze the data to solve problems. Students solve real-world problems and employ problem-solving strategies of identifying and using appropriate information.

• Source: https://sde.ok.gov/assessment-material
Students demonstrate mastery over appropriate grade-level subject matter and readiness for the next grade level. Students scoring at the Proficient level typically compare and order whole numbers. Students complete addition, subtraction, and multiplication problems and recognize the relationship between multiplication and division. Students construct and compare fractions using models. Students select the fewest number of coins for a given amount of money. Students determine rules to describe basic patterns. Students determine unknowns in equations and apply number properties. Students classify angles. Students sort three-dimensional figures and determine the perimeter of polygons. Students determine the area of two-dimensional figures. Students read and analyze length, temperature, and time. Students summarize a data set and analyze the data to solve problems. Students solve real-world problems and employ problem-solving strategies of identifying and using appropriate information.
• **3.N.1 Number Sense**- Compare and represent whole numbers up to 100,000 with an emphasis on place value and equality

• **3.N.2 Number Operations**- Add and subtract multi digit whole numbers; multiply with factors up to 10; represent multiplication and division in various ways; solve real-world and mathematical problems through the representation of related operations

• **3.N.3 Fractions**- Understand meanings and uses of fractions in real-world and mathematical situations

• **3.N.4 Money**- Determine the value of a set of coins or bills

Aligned KSAs in the Proficient PLD

• compare and order whole numbers
• complete addition, subtraction, and multiplication problems
• recognize the relationship between multiplication and division
• read and write fractions
• construct and compare fractions using models
• determine the value of a set of coins or bills
• select the fewest number of coins for a given amount of money
The OSDE curriculum frameworks are sets of curricular resources developed by Oklahoma teachers to help educators translate the Oklahoma Academic Standards into classroom practice. They illustrate what is expected of students at each grade level by examining the intent of each standard and providing instructional options to support student learning.

These tools may be helpful to educators as they evaluate, select and implement instruction, curriculum and classroom assessments aligned to standards.
Framework Features

- Deep dive into state standards
 - Objective Analysis - Math & ELA
 - Performance Expectation Analysis – Science
- By grade level
| **Eight Recursive Standards** | By nature, literacy knowledge and skills are recursive learning endeavors: *students revisit concepts again and again as they learn to read and write at increasingly sophisticated levels throughout their academic career.* This description and purpose of the recursive nature of the eight overarching standards provide a visual representation of this process. |
| **Objective Analysis** | Standard level descriptors including analysis for each grade-level objective is provided in a manner to support deep understanding. Visit the [Overview of Objective Analysis](#) to learn about the purpose, layout, and design. |
| **Student Proficiency Levels** | Instructional development of skills at each objective level is provided for each reading strand by standards. These levels are guidance for classroom teachers to identify student actions at varying stages of progression at the objective level. Here you will also find instructional guidance resources for students at the developing, approaching, and understanding level. These resources can be used as a springboard for instructional practices. |
Objective Analysis - ELA

<table>
<thead>
<tr>
<th>Standard 1: Reading Foundations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will develop foundational skills for future reading success by working with sounds, letters, and text.</td>
<td></td>
</tr>
</tbody>
</table>

FLUENCY: Students will recognize high-frequency words and read grade-level text smoothly and accurately, with expression that connotes comprehension.

Students will continue to review and apply earlier grade level expectations for this standard. If these fluency skills are not mastered, students will address skills from previous grades.

:3.2.F.1 Students will read high frequency and/or irregularly spelled grade-level words with automaticity in text.

<table>
<thead>
<tr>
<th>Student Actions</th>
<th>Teacher Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Students will quickly recognize and read regular and common irregularly spelled grade-level sight words.</td>
<td>• Teachers provide practice reading, spelling, writing, and using decodable and irregular sight words that are common, grade-level words.</td>
</tr>
<tr>
<td></td>
<td>• Teachers provide opportunities for students to identify and read sight words in context.</td>
</tr>
<tr>
<td></td>
<td>• Teachers monitor the acquisition of sight words and provide feedback and interventions as needed.</td>
</tr>
</tbody>
</table>

Supporting Resources

- [Dolch Words](#) (PDF)
- [Fry Words](#) (PDF)
- [Fluent, Automatic Reading of Text](#) (webpage)
- [Why are Sight Words Important](#) (webpage)

Teacher Insights

- Many sight words do not follow basic phonics principles, thus cannot be sounded out.
- If students can read high-frequency words with automaticity, their fluency will increase and they can focus on the more challenging task of comprehension.
- Automaticity is the ability to do things without having to think about them at a conscious level.
Student Proficiency Levels

<table>
<thead>
<tr>
<th>Developing</th>
<th>Approaching</th>
<th>Understanding</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.R.1</td>
<td>3.2.R.1</td>
<td>3.2.R.1</td>
<td>3.2.R.1</td>
</tr>
<tr>
<td>Students can identify the main idea and look for details that support the main idea with guidance.</td>
<td>Students can identify the main idea and look for details that support the main idea.</td>
<td>Students will locate the main idea and key supporting details of a text or section of text.</td>
<td></td>
</tr>
<tr>
<td>3.2.R.2</td>
<td>3.2.R.2</td>
<td>3.2.R.2</td>
<td>3.2.R.2</td>
</tr>
<tr>
<td>Students can identify the genre of a text by defining characteristics with guidance.</td>
<td>Students can identify the genre of a text by comparing and contrasting defining characteristics with guidance.</td>
<td>Students will compare and contrast details (e.g., plots or events, settings, and characters) to discriminate genres.</td>
<td></td>
</tr>
</tbody>
</table>

See Genre Guidance on page 90 of [OAS for ELA](#).
Other ELA Resources

• Engagement Strategies by grade level
• Literacy Progressions for 25 skills
• Matching Lexile Measures to Grade Ranges
Literacy Progressions

- **Standard**: Objectives in chronological order with shifts bolded
- **Progression**: Outlines how objectives develop and change from PK-12

Literacy Progression

<table>
<thead>
<tr>
<th>Standard 3</th>
<th>Progression</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK.3.W Students will use drawing, labeling, and dictating to express thoughts and ideas with guidance and support.</td>
<td>Narrative writing begins with drawing, telling, and using emergent writing like scribbles, letterlike forms, random letters, beginning sound, etc. This is where students share their thoughts and opinions about topics that are well-known to them.</td>
</tr>
<tr>
<td>K.3.W Students will use drawing, labeling, dictating, and writing to tell a story, share information, or express an opinion with guidance and support.</td>
<td>Teachers provide examples and model for students the incorporation of the setting and characters. Students begin writing narratives that incorporate plot through writing a specific beginning, middle, and end.</td>
</tr>
<tr>
<td>1.3.W.1 Students will begin to write narratives incorporating characters, plot (i.e., beginning, middle, end), and a basic setting (i.e., time, place) with guidance and support.</td>
<td>Students will establish the setting and characters of a story and continue to write narratives that incorporate plot and sequence of events. Students write narratives that incorporate appropriate transitional words and phrases to establish chronology. And finally, students write narratives that incorporate conclusions.</td>
</tr>
<tr>
<td>2.3.W.1 Students will write narratives incorporating characters, plot (i.e., beginning, middle, end), and a basic setting (i.e., time, place) with guidance and support.</td>
<td></td>
</tr>
</tbody>
</table>

Oklahoma State Department of Education
Performance Expectation Analysis

Performance Expectations represent the things students should know, understand, and be able to do to be proficient in science. Each Performance Expectation is built around three major dimensions:

1. Science and Engineering Practices
2. Crosscutting Concepts
3. Disciplinary Core Ideas (NRC, 2012, p. 2)

Instructional Bundles

The instructional bundles represent curricular resources developed by Oklahoma teachers to help teachers translate standards into classroom practice.

Vertical Progressions

Vertical progression documents are provided for the Disciplinary Core Ideas, Crosscutting Concepts, and the Science & Engineering Practices. There is also a Domain Comparison Chart that provides a quick look at the DCI found in each grade level.
Second Grade Bundles

Last edited by Megan Cannon 11 months, 2 weeks ago

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Maps</td>
<td>Maps give us information about the land around us. Maps can tell us where certain types of landforms are and can also provide us with information about bodies of water.</td>
</tr>
<tr>
<td>Matter</td>
<td>Matter is all around us and can exist in different states, including solids and liquids, depending on its temperature. Sometimes these changes from solid to liquid or liquid to solid can be reversed by heating or cooling. We can observe these changes to make observations about matter and why it sometimes changes states. In addition, materials can have different properties (e.g., flexibility, hardness, texture) that can be used to determine how that material could be used. Sometimes materials are used to make parts that can be put together to create a variety of objects.</td>
</tr>
<tr>
<td>Earth Events</td>
<td>Change occurs all around us. Some things change rapidly, like an eruption of a volcano, while others change very slowly, like the erosion of rock over a long period of time. We observe changes in the Earth every day; some changes start small and grow into big changes over time. Other changes occur much faster and allow us to watch the change take place right in front of us.</td>
</tr>
</tbody>
</table>
Instructional Bundle Elements

• Unit name and standards included the bundle

• In a Nut Shell – Standard/s in lay terms

• 3D Storyline- Breakdown and connections of each dimension (science and engineering practices, crosscutting concepts, and disciplinary core ideas)

• Student actions - What you’d expect students to be doing who are engaged in learning associated with the standard

• Common Misconceptions and Actual Concept
Vertical Progression by Dimension

<table>
<thead>
<tr>
<th>Grade 1</th>
<th>Grade 3</th>
<th>Grade 7</th>
<th>Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young animals are very much, but not exactly, like their parents.</td>
<td>Many characteristics of organisms are inherited from their parents.</td>
<td>Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes. Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual.</td>
<td>Each chromosome consists of a single, very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA.</td>
</tr>
<tr>
<td>Plants also are very much, but not exactly, like their parents.</td>
<td>Other characteristics result from individual’s interactions with the environment, which can range from diet to learning. Many characteristics involved both inheritance and environment.</td>
<td>Changes (mutations) to genes can results in changes to proteins, which can affect the structures and functions of the organism and thereby change traits.</td>
<td>The instructions for forming species’ characteristics are carried in DNA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not all DNA codes for protein, some segments of DNA are involved in regulatory or structural functions, and some have no, as of yet, known functions.</td>
</tr>
</tbody>
</table>
Mathematics Framework

<table>
<thead>
<tr>
<th>Grade-Level Mathematics Actions and Processes</th>
<th>Descriptions of the Mathematics Actions and Processes provide a sense of what students are doing as they develop into mathematically literate students.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suggested Learning Progression (v2)</td>
<td>This year-long progression provides a sample vision for the learner experience that engages in meaningful, connected mathematics.</td>
</tr>
<tr>
<td>Objective Analysis</td>
<td>Analysis for each grade-level objective is provided in a manner to support deep understanding for the teacher.</td>
</tr>
</tbody>
</table>
Mathematical Actions and Processes

- Develop a Deep and Flexible **Conceptual** Understanding
- Develop Mathematical **Reasoning**
- Develop an Accurate and Appropriate Procedural **Fluency**
- Develop a Productive Mathematical **Disposition**
- Develop Strategies for **Problem Solving**
- Develop the Ability to **Communicate** Mathematically
- Develop the Ability to Make **Conjectures**, **Model**, and **Generalize**
2.N.1.1 Read, write, discuss, and represent whole numbers up to 1,000. Representations may include numerals, words, pictures, tally marks, number lines and manipulatives.

In a Nutshell
This objective covers developing understanding of place value, the base ten number system, and the relationships among the different representations which lays the foundation of mathematics. Students enter second grade with a basic understanding of place value up to 100. They will expand their understanding of numbers up to 1,000 and express those numbers in various ways. In future grades, they will continue to apply these strategies up to the millions.

<table>
<thead>
<tr>
<th>Student Actions</th>
<th>Teacher Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Develop the ability to make conjectures, model, and generalize base ten number system understanding up to 1,000.</td>
<td>• Pose purposeful questions to help students justify their thinking about a variety of ways of representing whole numbers up to 1000 (e.g., Can you represent 512 in a different way?).</td>
</tr>
<tr>
<td>• Develop mathematical reasoning on the relationships among various representations.</td>
<td>• Implement mathematical tasks where students explore the connections between a number and its representation up to 1,000. (The digit ‘8’ represents eight objects.)</td>
</tr>
<tr>
<td>• Develop a deep and flexible conceptual understanding of the base ten number system.</td>
<td>• Facilitate meaningful discourse around a variety of representations of numbers using manipulatives, such as base-ten blocks up to 1,000.</td>
</tr>
</tbody>
</table>

Key Understandings
- Ten digits are used symbolically to represent numbers (0-9).
- ‘10’ represents one bundle or group of ten.
- ‘100’ represents ten bundles or groups of ten, called a “hundred”.
- ‘1000’ represents ten bundles or groups of one hundred, called a “thousand”.
- There are multiple ways to represent numbers.

Misconceptions
- Numbers can only be represented only one way (e.g., the number 502 could be represented by 5 hundreds and two ones, 50 tens and two ones, etc.).
Suggested Learning Progression Example

<table>
<thead>
<tr>
<th>Unit</th>
<th>Overarching Question</th>
<th>Essential Questions</th>
<th>Big Ideas</th>
<th>Full Objectives</th>
</tr>
</thead>
</table>
| Unit 1: Developing Place Value Concepts | How does place value help us understand number relationships? | 1. Why is the position of a digit important?
2. What is the relationship between the place of a digit and its value?
3. What are ways numbers can be represented?
4. How do numbers relate to one another? | 1. Our number system is based on ten.
2. Numbers can be represented in many ways.
3. Place value helps compare and order numbers.
4. Compatible numbers aid in problem solving. | **2.N.1.1** Read, write, discuss, and represent whole numbers up to 1,000. Representations may include numerals, words, pictures, tally marks, number lines and manipulatives. (up to 120)
2.N.1.2 Use knowledge of number relationships to locate the position of a given whole number on an open number line up to 100.
2.N.1.3 Use place value to describe whole numbers between 10 and 1,000 in terms of hundreds, tens and ones. Know that 100 is 10 tens, and 1,000 is 10 hundreds.
2.N.1.4 Find 10 more or 10 less than a given three-digit number. Find 100 more or 100 less than a given three-digit number. (a given two-digit number; finding 100 more or less will be in a later unit)
2.N.1.5 Recognize when to round numbers to the nearest 10 and 100.
2.N.1.6 Use place value to compare and order whole numbers up to 1,000 using comparative language, numbers, and symbols (e.g., 425 > 276, 73 < 107, page 351 comes after page 350; 752 is between 700 and 800). (up to 100) |
Suggested Learning Progression Elements

• Unit Name, time for instruction, and standards being taught
• Overarching Question- driving question for the unit that serves to guide instruction
• Essential Questions stimulate thought and connect mathematical processes and actions
• Big Ideas outline critical grade-level ideas for planning instruction
• Full Standard Objectives connect the standards that are being developed and mastered through the unit
Units Within the Learning Progression

Unit 1: Developing Place Value Concepts

Timing
5-6 weeks

Objectives
- 2.N.1.1
- 2.N.1.2
- 2.N.1.3
- 2.N.1.4
- 2.N.1.5
- 2.N.1.6

<table>
<thead>
<tr>
<th>1. Why is the position of a digit important?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. What is the relationship between the place of a digit and its value?</td>
</tr>
<tr>
<td>3. What are ways numbers can be represented?</td>
</tr>
<tr>
<td>4. How do numbers relate to one another?</td>
</tr>
</tbody>
</table>

| 1. Our number system is based on ten. |
| 2. Numbers can be represented in many ways. |
| 3. Place value helps compare and order numbers. |

2.N.1.1 Read, write, discuss, and represent whole numbers up to 1,000. Representations may include numerals, words, pictures, tally marks, number lines, and manipulatives. (up to 120)

2.N.1.2 Use knowledge of number relationships to locate the position of a given whole number on an open number line up to 100.

2.N.1.3 Use place value to describe whole numbers between 10 and 1,000 in terms of hundreds, tens, and ones. Know that 100 is 10 tens, and 1,000 is 10 hundreds.

2.N.1.4 Find 10 more or 10 less than a given three-digit number. Find 100 more or 100 less than a given three-digit number. (A given two-digit number; finding 100 more or less will be in a later unit)

2.N.1.5 Recognize when to round numbers to the nearest 10 and 100.

2.N.1.6 Use place value to compare and order whole numbers up to 1,000 using comparative language, numbers, and symbols (e.g., 425 > 276, 73 < 107, page 351 comes after page 350, 753 is between 700 and 800). (up to 100)
Grade Level Unit

• Technology Resources- free apps, websites, and smartboard lessons support instruction, differentiation, enhancement, and remediation

• Unit Launch Task-

• Resources by Big Idea
 – collaborative engagement- supports both large and small group instruction for elementary
 – evidence of understanding –
 – key resources- free instructional tasks
 – formative assessment

• Unit Closure assessment
Example Formative Assessment Probe

Prime Factorization

Decide if the example shows prime factorization.

<table>
<thead>
<tr>
<th>Circle yes or no:</th>
<th>Explain why you chose Yes or No:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) 36 = 3 x 3 x 2 x 2</td>
<td></td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>B) 100 = 10^2</td>
<td></td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>
2. Examples of correct selected response choices with sound reasoning and/or successful strategies

Student understands that prime factorization involves multiplication, not addition.

<table>
<thead>
<tr>
<th>47 = 10 \times 2^2 + 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES \quad NO</td>
</tr>
</tbody>
</table>

Because you can’t add in a prime factorization.
47 is prime number.

Students apply strategies and approaches such as factor trees for organizing prime factors.

<table>
<thead>
<tr>
<th>36 = 3 \times 3 \times 2 \times 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES \quad NO</td>
</tr>
</tbody>
</table>

A) \quad 36 = 3 \times 3 \times 2 \times 2
\quad \text{It is the prime factorization of 36}
Instructional ideas to consider

- To understand prime factors, students need foundational understanding of factors. Use visual representations and concrete materials to build understanding of factors before moving to prime factors. Students can use grid paper to create rectangles whose dimensions are the factors and whose area represents the number being factored. The length and width of the rectangle are two factors of the area. If only one rectangle can be drawn for a particular area, then the number is prime. For instance, the only rectangle that can be drawn with an area of 19 square units is a 1×19 rectangle. If more than one rectangle can be drawn to represent a particular area, the number is composite, not prime. For an area of 12 square units, four rectangles can be constructed: 1×12, 2×6, and 3×4. The numbers used as the length or width of any of those rectangles are factors of 12.

- Use counters or cubes to model factors. The number 25 can be modeled as one group of twenty-five or five groups of five. For this reason, 25 is composite, not prime. On the other hand, 23 can be modeled as one group of twenty-three but cannot be decomposed into equal groups in any other way. For this reason, 23 is prime.

- Build understanding of prime factors as a method of further factoring the factors of a number. Use organized approaches and factor trees to help students keep track of the factors and find the prime factors.

The division method:

```
  2 100
  2  50
  5  25
  5  5
```
Resources for Parents and Families

• For Parents and Families
 • Oklahoma Parent Portal Overview New! 09/07/2018
 • Understanding My Student's OSTP Scores- New! 09/07/2018
 • Understanding My Student's Lexile Scores
 • Oklahoma Family Guides- New! 10/04/2018
 • Redesigned Parent, Student, Teacher Guides- Spring 2019
 • Redesigned Student Testing Report-
The Oklahoma State Department of Education (OSDE) is excited to share the Oklahoma Family Guides for English Language Arts, Mathematics, Science, and Social Studies for Pre-K through 2nd Grade.

The OSDE Family Guides are resources aligned with the Oklahoma Academic Standards and developed specifically for Oklahoma families to complement classroom learning. They illustrate what is expected of students at each grade level in different content areas along with activities families can do at home to further support children's learning experiences.

Pre-K Through 2nd Grade Oklahoma Family Guides

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Pre-K</th>
<th>Kindergarten</th>
<th>1st Grade</th>
<th>2nd Grade</th>
<th>All Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Language Arts</td>
<td>Pre-K</td>
<td>Kindergarten</td>
<td>1st Grade</td>
<td>2nd Grade</td>
<td>ELA PK-2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Pre-K</td>
<td>Kindergarten</td>
<td>1st Grade</td>
<td>2nd Grade</td>
<td>Mathematics PK-2</td>
</tr>
<tr>
<td>Science</td>
<td>Pre-K</td>
<td>Kindergarten</td>
<td>1st Grade</td>
<td>2nd Grade</td>
<td>Science PK-2</td>
</tr>
<tr>
<td>Social Studies</td>
<td>Pre-K</td>
<td>Kindergarten</td>
<td>1st Grade</td>
<td>2nd Grade</td>
<td>Social Studies PK-2</td>
</tr>
<tr>
<td>Full Grade Level</td>
<td>All Pre-K</td>
<td>All Kindergarten</td>
<td>All 1st Grade</td>
<td>All 2nd Grade</td>
<td>All Grades Combined</td>
</tr>
</tbody>
</table>

The content information in these family guides is a snapshot of learning in the individual grade levels. For a complete set of academic standards for ELA, Mathematics, Science, and Social Studies, visit the [Oklahoma-academic-standards](#).

Grades 3-6 are coming soon!
Family Guides Overview

• Supports families as partners in education
• Currently available for PK-2
• Grades 3-5 available in January
• Communicates what students are learning in math, science, and ELA
• Provides ways to support learning at home in content area and holistically
 – Curiosity
 – Communication
 – Comprehension
KINDERGARTEN

What to expect:
Kindergarten is when children begin to grow academically, socially and emotionally in a structured learning environment. Families play an important role in that growth as they model positive learning behaviors and become involved in school activities.

Science can encourage and expand this natural curiosity. Ask your kindergartner questions like “What happens if you push or pull an object harder?” “Where do animals live, and why do they live there?” and “What is the weather like today, and how is it different than yesterday?”

This information is a snapshot of learning in kindergarten science. For a complete set of science academic standards, click here or visit sde.ok.gov/oklahoma-academic-standards.

By the end of the school year, your child will:
- Develop an understanding of patterns and changes in local weather and the purpose of weather forecasting to prepare for, and respond to, severe weather.
By the end of the school year, your child will:

- Develop an understanding of patterns and changes in local weather and the purpose of weather forecasting to prepare for, and respond to, severe weather.
- Understand how different strengths or directions of pushes and pulls change the motion of an object.
- Develop an understanding of what plants and animals (including humans) need to survive and the relationship between their needs and where they live.

What to do at home:

- Work with your child to draw what the weather looks and feels like several days in a row.
- Kick a soccer ball and talk about how a harder kick makes the ball go farther.
- Walk around your neighborhood or a local park and name the animals and plants you see, then talk about why the neighborhood or park is a good place for them to live.
Fostering Curiosity

Children are naturally curious and motivated to learn about things that interest them. Since curiosity contributes to success in the classroom, it is important to encourage it at home. Play is a wonderful way to nurture curiosity in young children, so be sure to allow plenty of playtime. Encourage your child to ask questions, discover answers and explore his or her world.

Cultivate your child’s curiosity with guiding questions like these:
- What are you interested in knowing more about?
- What else does that make you think of?
- Where do you think we can learn more about these things?

Your child will have plenty of questions. It’s okay if you don’t have the answer every time. The best response is always, “Let’s find out together.”
Fostering Comprehension

Increase vocabulary, thinking skills and curiosity by using new words and having conversations that include questions that make your child think. Communicating with others gives children a chance to see and understand that there can be more than one idea on a given subject. Accepting these different ideas helps children learn how to get along with others. This acceptance fosters positive relationships with peers and strong self-image.

Cultivate your child’s communication skills with questions like these:

- Who did you play with today? What did you play?
- What was your hardest rule to follow today? Why was it hard?
- What was your favorite part of the day and why?
- Can you tell me an example of kindness you saw and/or showed today?
Fostering Comprehension

Children who are on their way to becoming independent readers need time to read alone and with others. Families should take time to talk about books, magazines and other types of print with young readers. Use the following questions to help your child better understand what he or she is reading.

BEFORE READING
- What do you think this book is about?
- What do you think will happen?
- Why did you pick this book?

DURING READING
- What has happened so far?
- What do you think will happen next?
- Where and when does the story take place?

AFTER READING
- What happened in the beginning, middle and end?
- What did you learn from the book?
- Does it remind you of any other books you have read?

Join the conversation!
#oklaed
Parent Portal

Student’s Testing History in one place

https://okparentportal.emetric.net/login
https://okparentportal.emetric.net/login

The sample logins listed below are to be used by educators only and are not to be shared with parents. Please do not update the email or change the password.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Student ID (STN)</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3</td>
<td>1010919971</td>
<td>Oklahoma2018!</td>
</tr>
<tr>
<td>Grade 4</td>
<td>1020201889</td>
<td>Oklahoma2018!</td>
</tr>
<tr>
<td>Grade 5</td>
<td>1020328527</td>
<td>Oklahoma2018!</td>
</tr>
<tr>
<td>Grade 6</td>
<td>2010223463</td>
<td>Oklahoma2018!</td>
</tr>
<tr>
<td>Grade 7</td>
<td>2020126418</td>
<td>Oklahoma2018!</td>
</tr>
<tr>
<td>Grade 8</td>
<td>2010226351</td>
<td>Oklahoma2018!</td>
</tr>
</tbody>
</table>
Comparison to school district and state

Student's Performance Level: **PROFICIENT**

Your student's OPI score on any one test provides an estimate of what he/she knows and is able to do. If tested again, your student would likely score in the range: 303-315.
OSTP 7th Grade Mathematics

<table>
<thead>
<tr>
<th>Reporting categories</th>
<th>Below Standard</th>
<th>At/Near Standard</th>
<th>Above Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 Area Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number & Operations: How well does your student understand using, comparing,</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>and calculating positive and negative numbers (fractions, decimals, and whole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>numbers) in a variety of real-world situations?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algebraic Reasoning: How well does your student recognize proportional</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>relationships and apply them to real-world situations? How well does your student</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>represent a mathematical situation that includes an unknown variable?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry & Measurement: How well does your student identify, categorize, and</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>measure the angles, volume, and surface area of three-dimensional and complex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>two-dimensional shapes in the real world? How well does your student connect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>proportional reasoning to geometry?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data & Probability: How well does your student interpret data and make</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>predictions based on the mean, median, and mode of a set of data? How well does</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>your student use proportional reasoning to make predictions based on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>probabilities, circle graphs, and histograms?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supporting Resource: Understanding my Student's OSTP Scores

- Answers questions-
 - Why do we have state tests?
 - How does the school use the scores?
 - How can I help at home?
 - What does the report tell me?
 - How did your student do overall?
 - How did your student do compared to others at the school, district, and state?
 - What should my student know and be able to do?
 - What are my student’s strengths?
Redesigning the Parent, Student Teacher Guide

• Focus on family friendly language around key questions:
 – What is my student learning?
 – How can I support my student at home?
 – What types of questions will my student see on the state test

Grades 3-8 Assessments

2017-18 OSTP Parent, Student and Teacher Guides (PSTG)
Provides a list of test-taking tips, objectives covered in the test and practice questions.

Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8
Supporting your Student at Home

- Read with your child. Allow your child to read to you as well as you read to him or her.
- Help your child learn new words by encouraging him or her to notice the patterns within the words and thinking about the sentences before and after for understanding.
- Discuss why the author may have written a given book and who would be the main readers.
- Have your child tell you what happened in a story and how he or she would change the ending or solve the problem.
- Talk with your child about the information he or she learned from books they are reading.
- Learn and use new words. Challenge yourself to use these words in conversations with your child.
- Encourage your child to create stories or observations in a notebook. Add questions or comments if you would like.

For more information about the Grade 3 ELA Standards and/or Assessment, visit the [link to the Test and Item Specs](#).
What is the perimeter, in centimeters (cm), of this parallelogram?

\[\text{Perimeter} = 2 \times (132 + 60) = 2 \times 192 = 384 \text{ cm} \]

F 192
G 236
H 384
J 428

Distractor Rationale

F The student computed 132 + 60.
G The student added the numbers labeled on the figure.
H Correct. The student demonstrated an ability to find the perimeter of a parallelogram.
J The student included the height as part of the perimeter and computed 132 + 60 + 132 + 60 + 44.
Student Paper Report Redesign

• Parent and Educator Focus Groups
• Previews available at DTC trainings in February
• Available for the 2018-19 assessment reports
Thoughts
Feedback
Have Questions- Contact Us

Dr. Marydith McBee: Deputy Sup. Of Assessment & Accountability
Craig Walker: Executive Director | Craig.Walker@sde.ok.gov

Maria Harris: Assistant Executive Director | Maria.Harris@sde.ok.gov

Elizabeth Warren: Director English Language Proficiency | Elizabeth.Warren@sde.ok.gov

Lesa Rohrer: Director Assessment and Data Literacy | Lesa.Rohrer@sde.ok.gov

Christy McCreary: ELA/ Social Studies Specialist | Christina.McCreary@sde.ok.gov

Cora James: Science Assessment Specialist | Cora.James@sde.ok.gov

Sarah Owens: Math Assessment Specialist | Sarah.Owens@sde.ok.gov