BUILDING BUY-INS RELATIONSHIPS MATTER PRYOR PUBLIC SCHOOLS

JPMORGAN CHASE & CO.

PANEL MEMBERS PRYOR PUBLIC SCHOOLS

Dr. Don Raleigh Pryor Public Schools Superintendent raleighd@pryorschools.org

Scott Fry Mid America Industrial Park Director of Workforce Development sfry@maip.com

David Day Pryor Public Schools College & Career Coordinator dayd@pryorschools.org

Kira Weaver Pryor High School Senior

SREB – ADVANCED ENGINEERING TECHNOLOGY PRYOR PUBLIC SCHOOLS

INTEGRATED PRODUCTION TECHNOLOGY

COURSE DESCRIPTION

This course engages students in the use of modern technologies in the design and improvement of products. Students use three-dimensional CAD software in the creation and analysis process. Students document designs using standards set by industry for design documentation. Students implement methods of green production and just-in-time component supply, which allow for the lowest cost and highest quality products. Students design and troubleshoot data acquisition, programmable logic control, process monitoring, automation, and robotic systems. Students incorporate sensing and vision systems, utilizing cameras and sensors to control automated systems.

- Project 1: Reverse Engineering/Manufacturing Basics
- Project 2: Manufacturing's Role
- Project 3: Direct Current (DC) Motors
- Project 4: Thermoforming and Temperature Control
- Project 5: Tank Volume Control
- Project 6: Batch and Separation System

LEGO DUPLO Reverse Engineering

By Kira Weaver

INTRODUCTION

HomeTech Co. has requested an item be reverse engineered with clear documentation of the steps taken as well as a solid model. A Lego Duplo block was chosen for recreation.

- Item must fit within bounds of 3D printer's platform
- Project must stay under a set budget of \$3,750
- Project must be completed by September 29, 2017

LITERATURE REVIEW

•

each²

Studs .56in webs Ribs .1in webs Colored granules are melted Melted plastic is poured into molds Plastic is pressurized and cooled Blocks are removed from molds¹ Lego Duplo blocks cost less than \$0.05 to manufacture • Lego Duplo blocks sell for over \$0.10 • Blocks feature 5 main components³ **Center Peg**

> ¹ lego.com/en-us/service/help/fun-for-fans/more-about-us/how-lego-bricks-are-made-40810000007834 ² shop.lego.com/en-US/pickabrick ³ shortsleeveandtieclub.com/breaking-down-the-design-lego-perfecting-the-plastic-brick

Creating a SolidEdge Model

The original Lego sample was measured and these measurements were displayed in technical drawings. These drawings were used to create a 3D SolidEdge model.

Test Print Results Chart

Test Print	Prototype	Results					
1		 Test Print 1 Printed stud side down Printed less than half the size of original sample 					
2		 Test Print 2 Resized to proper dimensions Printed bottom (open) side down One corner was raised 					
3		Test Print 3Printed with no flaws					
4		Test Print 4Printed thicker than other blocks					

Testing and Comparing Components

- Block must be 1.25 x 1.69 x 1.25 inches
- Block must have all 5 components shown in the original Lego sample
- Block must fit together with the Lego sample.

	Lego Duplo	Solid Model			
Cost to Manufacture	\$0.05	\$0.77			
Time to Manufacture	Less than 30 seconds	1 hour 40 minutes			
Plastic Type	ABS	PLA			
Error Rate	18/1,000,000	50% (out of 4 models only)			

CONCLUSION

In all, the reverse engineering of the Lego Duplo block for HomeTech Co. was a success. However, reproduction of the blocks may not be reasonable for the future due to cost and time requirements.

The only change made to the blocks was lowering the center peg flush with the platform to allow the printer to build the models properly

Improvements that could be made to reduce costs include

- Use different material
- Use a different manufacturing method altogether

LEGO DUPLO Manufacturing Plan

Kira Weaver & Andrew Ramirez

PLANT TOUR OF AMERICAN CASTINGS

INTRODUCTION

LittleBugs Toy Company has hired a team of engineers to create a manufacturing plan for a new product

- New products modeled after Lego Duplo blocks
- Safety, cost-effectiveness, quality
- Budget of \$155,300

Parts and Materials							
Item	Quantity	Price per unit (USD\$)					
Injection Molding Machine	1	35,000					
Silos	6	14,250					
3D Scanner	1	25,000					
Conveyor Belt	1	1,000					
Production Sorter	1	3,790					
Box Maker	1	5,000					
Plastic Granules (1400lbs)	As needed	1,540					

ORTHOGRAPHIC DRAWINGS

RESEARCH

- Polypropylene plastic was decided to be most appropriate plastic
 - Strength, safety, low cost, and eco-friendliness
- Injection molding was chosen as most reasonable manufacturing method
 - Relatively cheap process, fast manufacturing time

Plastic Choices								
Plastic Type	Cost per Pound (USD\$)	Tensile Strength (psi)	Safety	Eco- Friendliness				
HDPE	1.20	4000	Safe	Yes				
PP	1.10	5400	Safe	Yes				
PS	1.39	3500	Not Safe	No				
ABS	1.29	4100	Safe	No				

INJECTION MOLDING PROCESS

ROUTING SHEET

LittleBugs Building Blocks

Part Number: 197-187 Description: Block Set			Production	Drawing	No.: LPD-00100				
Quantity: 50 "sets", 120 pcs Mat: Polypropylene Plas			ene Plastic	Plastic		Planner: K. Weaver			
Revision No.: 001		Date: 10/12/17 Page 1		of 1	Order No	Order No.: RSN-0000-001			
Op. no.	Description			Work Center		Machine			
100 200 300 300 400 500 500 500 500	Granules moved to melting chamber and melted Melted plastic sent to molds Molding machine pressurizes and cools the plastic Blocks are ejected from the machine onto conveyor belt Blocks are moved single-file into 3D scanner for quality check, rejects are moved off production line Blocks move through counter, sorted into sets Sets are reviewed, boxed, and prepared to distribute			Storage center Warehouse " " Warehouse Warehouse " " Warehouse Warehouse	ping	Silos Injection Molding Machine Injection Molding Machine Injection Moldling Machine Conveyor Belt/3D Scanner Conveyor Belt/3D Scanner Mechanical Counter Boxing Machine			

SET PRODUCTION

Cost to Manufacture Building Blocks						
Est. Weight/ block: 13g Grams/Pound: Approx. 454	Grams/Pound / Weight/block = Blocks/pound 454g / 13g = Approx 34					
1 Pound/PP: \$1.10 Blocks/Pound: 34	Pound/PP / Blocks/Pound = Cost/Block 1.10 / 34 = \$.03					
Cost/Block: \$.03 Blocks/set: 120	Cost/Block x Blocks/Set = Cost/Set \$.03 x 120 = \$3.60					

LittleBugs Building Blocks

Assembly Name :	Building Blocks Set
Assembly Number :	1
Assembly Revision :	1
Approval Date :	10-0ct-17
Part Count :	120
Total Cost :	\$3.60

Part #	Part Name	Description	Qty	Units	Picture	Uni	iit Cost		Cost	
1	Building block	Color: Red Material: PP	20	each			\$0.03	S	0.60	
2	Building block	Color: Blue Material: PP	20	each		S	0.03	S	0.60	
3	Building block	Color: Yellow Material: PP	20	each		S	0.03	S	0.60	
4	Building block	Color: White Material: PP	20	each		S	0.03	S	0.60	
5	Building block	Color: Orange Material: PP	20	each		S	0.03	S	0.60	
6	Building block	Color: Green Material: PP	20	each		\$	0.03	S	0.60	
	Total		120					\$	3.60	

CONCLUSION

- Researched manufacturing methods and created a budget
- Created a manufacturing process as well as supplemental documents
 - Bill of Materials, orthographic drawings, routing sheets
- Possible improvements:
 - White filaments, add in color pigment during melting
 - Combine 3D scanner and mechanical counter

REFERENCES

- Beale (2011). <u>http://www.plasticseurope.org/what-is-plastic/types-of-plastics-</u> <u>11148/engineering-plastics/abs.aspx</u>
- bricklink.com
- Diaz (2008). gizmodo.com/5019797/everything-you-always-wanted-to-know-about-lego
- Jacques (2014). m.huffpost.com/us/entry/4862088
- lego.com/en-us/service/help/fun-for-fans/more-about-us/how-lego-bricks-are-made-40810000007834
- Sather (2016). shortsleeveandtieclub.com/breaking-down-the-design-lego-perfecting-theplastic-brick
- shop.lego.com/en-US/pickabrick

Donated funding to support STEM Labs for the 5 Mayes County Schools

NEW SKILLS OF YOUTH JPMORGAN CHASE & CO.

MAIP YOUTH MARKETING TEAM MidAmerica

CORPORATION

MOVIE IN THE PARK

AMERICAN THE RIGHT WAY

SENIOR INTERNSHIP PROGRAM

JPMORGAN CHASE & CO.

GUEST SPEAKERS

JPMORGAN CHASE & CO.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=oahUKEwjdl5nviJrXAhXmj1QKHQUvBroQjRwlBw&url=htt p%3A%2F%2Ftulsastem.org%2Fseaperch-challenge%2F&psig=AOvVaw1oCPMVMGK24YDQgf_A9lXg&ust=1509511679496117 **NEW SKILLS Pr YOUTH** JPMorgan Chase & Co.

3rd GRADERS GO TO WORK

JPMORGAN CHASE & CO.

ALTERNATIVE LEARNING CENTER

PT. 6, 1830

DAVID DAY PRYOR HIGH SCHOOL HEAD BOYS BASKETBALL COACH COLLEGE & CAREER COORDINATOR

PO BOX 548 PRYOR, OK 74362 (918) 825-2340 x3973 (HS) (405) 328-1194 (CELL) dayd@pryorschools.org

JPMORGAN CHASE & CO.