

Oklahoma School Testing Program Oklahoma Core Curriculum Tests

Grades 3 to 8 Assessments 2012–2013 Technical Report

FINAL

Submitted to
The Oklahoma State Department of Education
December 2013

Copyright

Developed and published under contract with Oklahoma State Department of Education by CTB/McGraw-Hill LLC, 20 Ryan Ranch Road, Monterey, California 93940-5703. Copyright © 2013 by Oklahoma State Department of Education. Portions copyright © CTB/McGraw-Hill LLC. All rights reserved. Only Oklahoma State educators and citizens may copy and/or download and print the document, located online at http://ok.gov/sde/accountability-state-testing-results. Any other use or reproduction of this document, in whole or in part, requires written approval of Oklahoma State Department of Education and the publisher.

Revision History

Version 1.0

Table of Contents

Copyright	i
Revision History	ii
Table of Contents	iii
List of Tables	
List of Figures	
List of Appendices	
Acronyms and Abbreviations	
Introduction	
Section 1 – Overview	
Section 1.1. – Purpose	
Section 1.2. – <i>Oklahoma C</i> ³ Content Standards	
Section 2 – Item and Test Development	
Section 2.1 – Aligning Test to <i>Oklahoma C</i> ³ Content Standards	
Section 2.2 – Item Pool Development and Selection	
Section 2.3 – Configuration of the Spring 2013 Tests	
Section 2.4 – Operational and Field Test Items by Content Area	
Section 3 – Administration	
Section 3.1 – Packaging and Shipping	
Section 3.2 – Materials Return	
Section 3.3 – Materials Discrepancies Process	
Section 4 – Scoring	
Section 4.1 – Hand Scoring	
Section 5 – Sampling Plan and Field Test Design	
Section 5.1 – Sampling Plan	
Section 5.2 – Field Test Design	
Section 5.3 – Data Checking Activities	
5.3.1 Suppressed/Omitted/Invalidated cases	
5.3.2 Duplicate cases	
5.3.3 Non-public schools	
Section 6 – Methods	
Section 6.1 – Classical Item Analyses	
Section 6.2 – Differential Item Functioning (DIF)	
Section 6.3 – Calibration & Item Fit	
Section 6.4 – Equating	
Section 6.5 – Writing Scoring	
Section 7 – Results	
Section 7 – Results	
Section 7.2 – Standards Level Performance	
Section 7.2 – Standards Level Performance	
Section 7.4 – Proficiency Level Performance	
Section 8 – Summary of Reliability and Validity	
Section 8.1 – Item Level Reliability	
Section 8.2 – Test Level Reliability	
Section 8.3 – Test Level Reliability	
because of the term and the summer of the su	

Section 8.4 – Performance Level Reliability	36
Section 9 – Online Disruption in Spring 2013 Administration	
Section 9.1 – Interruption Study	40
Section 9.2 – Actions for Disrupted Students	40
References	41
Tables	45
Figures	129
Appendices	
Appendix A Standards, Objectives/Skills, and Processes Assessed by Subject.	192
Appendix B A Statistical Investigation of Oklahoma Computer Disruptions	209

List of Tables

Table 1.1. Testable Standards for OCCT Grades 3 to 8	3
Table 2.1. Testable Standards for OCCT Grades 3 to 8	6
Table 2.2. Criteria for Aligning the Test with Oklahoma C ³ Standards and Objectives	7
Table 2.3 Percentage of Items by Depth of Knowledge Levels for OCCT 3–8 Assessments	9
Table 2.4 Configuration of the OCCT 3–8 Tests for Spring 2013	11
Table 4.1 Inter-Rater Reliability Coefficients for the Operational Writing Prompt, Grade 5	17
Table 4.2 Inter-Rater Reliability Coefficients for the Operational Writing Prompt, Grade 8	
Table 5.1. Equating Sample Size for Spring 2013 and Respective Percent of the	
Population for Each Grade and Content	20
Table 6.1. Writing Analytic Traits and Scoring Weights	28
Table 7. Subgroup Representativeness of Scaling Sample Compared to	
Total Population, Spring 2013	45
Table 8. Summary of P-Values and Item-Test Correlations Statistics for	
Operational Test Forms, Spring 2011 to Spring 2013	51
Table 9. Summary of Range of P-Values and Item-Test Correlations Statistics for	
Operational and Field Test, Spring 2013	52
Table 10. Summary of Range of Omission Rates for Operational and	
Field Test by Item Type, Spring 2013	53
Table 11. Spring 2013 Summary of Operational and Field Test Items Flagged for Mantel-	
Haenszel Differential Item Functioning, by Item Type: Gender Male/Female	54
Table 12. Spring 2013 Summary of Operational and Field Test Items Flagged for Mantel-	
Haenszel Differential Item Functioning, by Item Type: Ethnicity White/Asian	55
Table 12.1 Spring 2013 Summary of Operational and Field Test Items Flagged for Mantel-	
Haenszel Differential Item Functioning, by Item Type: Ethnicity White/African American	56
Table 12.2 Spring 2013 Summary of Operational and Field Test Items Flagged for Mantel-	
Haenszel Differential Item Functioning, by Item Type: Ethnicity White/Hispanic	57
Table 12.3 Spring 2013 Summary of Operational and Field Test Items Flagged for Mantel-	
Haenszel Differential Item Functioning, by Item Type: Ethnicity White/American Indian	58
Table 13. Mathematics Grades 3–5 Standards Level Summary Data, Spring 2013	
Table 13.1 Mathematics Grades 6–8 Standards Level Summary Data, Spring 2013	61
Table 14. Reading Grades 3–5 Standards Level Summary Data, Spring 2013	63
Table 14.1 Reading Grades 6–8 Standards Level Summary Data, Spring 2013	
Table 15. Science Grades 5 & 8 Standards Level Summary Data, Spring 2013	67
Table 16. Spring 2012 Scale Score Statistics	
Table 17. Spring 2013 Scale Score Statistics	70
Table 18. Spring 2013, Mathematics Grades 3 & 4 State and	
Subgroup Scale Score Descriptive Data	71
Table 18.1 Spring 2013, Mathematics Grades 5 & 6 State and	
Subgroup Scale Score Descriptive Data	72
Table 18.2 Spring 2013, Mathematics Grades 7 & 8 State and	
Subgroup Scale Score Descriptive Data	73
Table 19. Spring 2013, Reading Grades 3 & 4 State and	
Subgroup Scale Score Descriptive Data	74
Table 19.1 Spring 2013, Reading Grades 5 & 6 State and	

Subgroup Scale Score Descriptive Data	. 75
Table 19.2 Spring 2013, Reading Grades 7 & 8 State and	
Subgroup Scale Score Descriptive Data	76
Table 20. Spring 2013, Science Grades 5 & 8 State and	
Subgroup Scale Score Descriptive Data	.77
Table 21. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test:	
Accommodated/Non Accommodated	. 78
Table 22. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test:	
Accommodated/Non Accommodated	. 78
Table 23. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test:	
Accommodated/Non Accommodated	. 78
Table 24. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test:	
ELL/Non ELL	. 79
Table 25. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test:	
ELL/Non ELL	. 79
Table 26. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test:	
ELL/Non ELL	. 79
Table 27. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test:	
Female/Male	. 80
Table 28. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test: Female/Male	80
Table 29. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test: Female/Male.	. 80
Table 30. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test:	
	81
Table 31. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test: IEP/Non IEP	81
Table 32. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test: IEP/Non IEP.	81
Table 33. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test:	
Low SES/High SES	82
Table 34. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test:	
Low SES/High SES	. 82
Table 35. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test:	
Low SES/High SES	82
Table 36. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test:	
Section 504/Non Section 504	. 83
Table 37. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test:	
Section 504/Non Section 504	83
Table 38. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test:	
Section 504/Non Section 504	
Table 39. Spring 2013, Mathematics Subgroup Mean Differences, ANOVA: Ethnicity	84
Table 40. Spring 2013, Reading Subgroup Mean Differences, ANOVA: Ethnicity	
Table 41. Spring 2013, Science Subgroup Mean Differences, ANOVA: Ethnicity	85
Table 42. Mathematics, Pair-Wise Dunnett's C Post-Hoc Comparison of Spring 2013	
Scale Score Mean Differences by Ethnicity	86
Table 43. Reading, Pair-Wise Dunnett's C Post-Hoc Comparison of Spring 2013	
Scale Score Mean Differences by Ethnicity	. 92
Table 44. Science, Pair-Wise Dunnett's C Post-Hoc Comparison of Spring 2013	
Scale Score Mean Differences by Ethnicity	. 98

Table 45. Spring 2013, Mean Scale Score and Standard Deviations for	
State and Each Proficiency Level	. 100
Table 46. Spring 2012 Proficiency Level Impact Data, (% rounded)	. 101
Table 47. Spring 2013 Proficiency Level Impact Data, (% rounded)	. 102
Table 48. Spring 2013, Mathematics State and Subgroup Proficiency Level Impact Data	. 103
Table 49. Spring 2013, Reading State and Subgroup Proficiency Level Impact Data	. 106
Table 50. Spring 2013, Science State and Subgroup Proficiency Level Impact Data	. 109
Table 51. Spring 2013 Operational Test Parameters Correlations	
Table 52. Scale Score Statistics for Operational Test in Spring 2012 and Spring 2013	. 111
Table 53. Spring 2013, Proficiency Levels Cut Scores and Scale Bounds	. 112
Table 54. Spring 2013, Proportion of Students Within Each Performance Level	. 112
Table 55. Differences in Overall Pass Rate for Spring 2012 and Spring 2013	. 113
Table 56. Spring 2013, Summary of Range of P-Values and Item-Test Correlations	
Statistics for Operational and Field Test, by Item Type	. 114
Table 57. Spring 2012 and Spring 2013 Test Reliability Data	. 115
Table 58. Mathematics, Raw Score to Scale Score Conversions &	
Standard Error of Measurement	. 116
Table 59. Reading, Raw Score to Scale Score Conversions & Standard Error of Measuremen	t118
Table 60. Science, Raw Score to Scale Score Conversions & Standard Error of Measurement	120
Table 61. Spring 2013, Total Group Factor Analysis Results: Eigenvalues	. 121
Table 62. Spring 2013, Mathematics Subgroup Factor Analysis Results: Eigenvalues	. 122
Table 63. Spring 2013, Reading Subgroup Factor Analysis Results: Eigenvalues	. 123
Table 64. Spring 2013, Science Subgroup Factor Analysis Results: Eigenvalues	. 124
Table 65. Spring 2013, Proficiency Level Cut Scores and	
Standard Error of Measurement (SEM)	. 125
Table 66. Estimates of Accuracy and Consistency of Performance Classification	. 126
Table 67. Accuracy & Consistency Estimates by Cut Score	. 127
Table 68. Accuracy & Consistency Estimates by Cut Score:	
False Positive and False Negative Rates	. 128

List of Figures

Figure 1. Spring 2013 Grade 3 Mathematics operational scale score histogram	129
Figure 2. Spring 2013 Grade 4 Mathematics operational scale score histogram	130
Figure 3. Spring 2013 Grade 5 Mathematics operational scale score histogram	131
Figure 4. Spring 2013 Grade 6 Mathematics operational scale score histogram	132
Figure 5. Spring 2013 Grade 7 Mathematics operational scale score histogram	133
Figure 6. Spring 2013 Grade 8 Mathematics operational scale score histogram	134
Figure 7. Spring 2013 Grade 3 Reading operational scale score histogram	135
Figure 8. Spring 2013 Grade 4 Reading operational scale score histogram	136
Figure 9. Spring 2013 Grade 5 Reading operational scale score histogram	137
Figure 10. Spring 2013 Grade 6 Reading operational scale score histogram	138
Figure 11. Spring 2013 Grade 7 Reading operational scale score histogram	139
Figure 12. Spring 2013 Grade 8 Reading operational scale score histogram	140
Figure 13. Spring 2013 Grade 5 Science operational scale score histogram	141
Figure 14. Spring 2013 Grade 8 Science operational scale score histogram	142
Figure 15. Spring 2013 Grade 3 Mathematics operational test characteristic curve and stand	ard
error of measurement curve	143
Figure 16. Spring 2013 Grade 4 Mathematics operational test characteristic curve and stand	ard
error of measurement curve	
Figure 17. Spring 2013 Grade 5 Mathematics operational test characteristic curve and stand	ard
error of measurement curve	
Figure 18. Spring 2013 Grade 6 Mathematics operational test characteristic curve and stand	ard
error of measurement curve	146
Figure 19. Spring 2013 Grade 7 Mathematics operational test characteristic curve and stand	ard
error of measurement curve	147
Figure 20. Spring 2013 Grade 8 Mathematics operational test characteristic curve and stand	ard
error of measurement curve	
Figure 21. Spring 2013 Grade 3 Reading operational test characteristic curve and standard e	error
of measurement curve	149
Figure 22. Spring 2013 Grade 4 Reading operational test characteristic curve and standard e	error
of measurement curve	150
Figure 23. Spring 2013 Grade 5 Reading operational test characteristic curve and standard e	error
of measurement curve	151
Figure 24. Spring 2013 Grade 6 Reading operational test characteristic curve and standard e	error
of measurement curve	152
Figure 25. Spring 2013 Grade 7 Reading operational test characteristic curve and standard e	error
of measurement curve	
Figure 26. Spring 2013 Grade 8 Reading operational test characteristic curve and standard e	error
of measurement curve	154
Figure 27. Spring 2013 Grades 5 Science operational test characteristic curve and standard of	error
of measurement curve	
Figure 28. Spring 2013 Grades 8 Science operational test characteristic curve and standard of	error
of measurement curve	
Figure 29. Spring 2013 Grade 3 Mathematics scree plot: Total	157
Figure 30. Spring 2013 Grade 3 Mathematics scree plot: Accommodated	

Figure 31. Spring 2013 Grade 3 Mathematics scree plot: English Language Learner	158
Figure 32. Spring 2013 Grade 3 Mathematics scree plot: Free Lunch	158
Figure 33. Spring 2013 Grade 3 Mathematics scree plot: Individualized Education Program	159
Figure 34. Spring 2013 Grade 4 Mathematics scree plot: Total	
Figure 35. Spring 2013 Grade 4 Mathematics scree plot: Accommodated	
Figure 36. Spring 2013 Grade 4 Mathematics scree plot: English Language Learner	
Figure 37. Spring 2013 Grade 4 Mathematics scree plot: Free Lunch	
Figure 38. Spring 2013 Grade 4 Mathematics scree plot: Individualized Education Program	
Figure 39. Spring 2013 Grade 5 Mathematics scree plot: Total	
Figure 40. Spring 2013 Grade 5 Mathematics scree plot: Accommodated	162
Figure 41. Spring 2013 Grade 5 Mathematics scree plot: English Language Learner	
Figure 42. Spring 2013 Grade 5 Mathematics scree plot: Free Lunch	
Figure 43. Spring 2013 Grade 5 Mathematics scree plot: Individualized Education Program	
Figure 44. Spring 2013 Grade 6 Mathematics scree plot: Total	
Figure 45. Spring 2013 Grade 6 Mathematics scree plot: Accommodated	
Figure 46. Spring 2013 Grade 6 Mathematics scree plot: English Language Learner	
Figure 47. Spring 2013 Grade 6 Mathematics scree plot: Free Lunch	
Figure 48. Spring 2013 Grade 6 Mathematics scree plot: Individualized Education Program	
Figure 49. Spring 2013 Grade 7 Mathematics scree plot: Total	
Figure 50. Spring 2013 Grade 7 Mathematics scree plot: Accommodated	
Figure 51. Spring 2013 Grade 7 Mathematics scree plot: English Language Learner	
Figure 52. Spring 2013 Grade 7 Mathematics scree plot: Free Lunch	
Figure 53. Spring 2013 Grade 7 Mathematics scree plot: Individualized Education Program	
Figure 54. Spring 2013 Grade 8 Mathematics scree plot: Total	
Figure 55. Spring 2013 Grade 8 Mathematics scree plot: Accommodated	
Figure 56. Spring 2013 Grade 8 Mathematics scree plot: English Language Learner	
Figure 57. Spring 2013 Grade 8 Mathematics scree plot: Free Lunch	
Figure 58. Spring 2013 Grade 8 Mathematics scree plot: Individualized Education Program	
Figure 59. Spring 2013 Grade 3 Reading scree plot: Total	
Figure 60. Spring 2013 Grade 3 Reading scree plot: Accommodated	
Figure 61. Spring 2013 Grade 3 Reading scree plot: English Language Learner	
Figure 62. Spring 2013 Grade 3 Reading scree plot: Free Lunch	
Figure 63. Spring 2013 Grade 3 Reading scree plot: Individualized Education Program	
Figure 64. Spring 2013 Grade 4 Reading scree plot: Total	
Figure 65. Spring 2013 Grade 4 Reading scree plot: Accommodated	
Figure 66. Spring 2013 Grade 4 Reading scree plot: English Language Learner	
Figure 67. Spring 2013 Grade 4 Reading scree plot: Free Lunch	
Figure 68. Spring 2013 Grade 4 Reading scree plot: Individualized Education Program	
Figure 69. Spring 2013 Grade 5 Reading scree plot: Total	
Figure 70. Spring 2013 Grade 5 Reading scree plot: Accommodated	
Figure 71. Spring 2013 Grade 5 Reading scree plot: English Language Learner	
Figure 72. Spring 2013 Grade 5 Reading scree plot: Free Lunch	
Figure 73. Spring 2013 Grade 5 Reading scree plot: Individualized Education Program	
Figure 74. Spring 2013 Grade 6 Reading scree plot: Total	
Figure 75. Spring 2013 Grade 6 Reading scree plot: Accommodated	
Figure 76. Spring 2013 Grade 6 Reading scree plot: English Language Learner	

Figure 77. Spring 2013 Grade 6 Reading scree plot: Free Lunch	181
Figure 78. Spring 2013 Grade 6 Reading scree plot: Individualized Education Program	181
Figure 79. Spring 2013 Grade 7 Reading scree plot: Total	182
Figure 80. Spring 2013 Grade 7 Reading scree plot: Accommodated	182
Figure 81. Spring 2013 Grade 7 Reading scree plot: English Language Learner	183
Figure 82. Spring 2013 Grade 7 Reading scree plot: Free Lunch	183
Figure 83. Spring 2013 Grade 7 Reading scree plot: Individualized Education Program	184
Figure 84. Spring 2013 Grade 8 Reading scree plot: Total	184
Figure 85. Spring 2013 Grade 8 Reading scree plot: Accommodated	185
Figure 86. Spring 2013 Grade 8 Reading scree plot: English Language Learner	185
Figure 87. Spring 2013 Grade 8 Reading scree plot: Free Lunch	186
Figure 88. Spring 2013 Grade 8 Reading scree plot: Individualized Education Program	186
Figure 89. Spring 2013 Grade 5 Science scree plot: Total	187
Figure 90. Spring 2013 Grade 5 Science scree plot: Accommodated	187
Figure 91. Spring 2013 Grade 5 Science scree plot: English Language Learner	188
Figure 92. Spring 2013 Grade 5 Science scree plot: Free Lunch	188
Figure 93. Spring 2013 Grade 5 Science scree plot: Individualized Education Program	189
Figure 94. Spring 2013 Grade 8 Science scree plot: Total	189
Figure 95. Spring 2013 Grade 8 Science scree plot: Accommodated	190
Figure 96. Spring 2013 Grade 8 Science scree plot: English Language Learner	190
Figure 97. Spring 2013 Grade 8 Science scree plot: Free Lunch	191
Figure 98. Spring 2013 Grade 8 Science scree plot: Individualized Education Program	191

List of Appendices

Appendix A Standards, Objectives/Skills, and Processes Assessed by Subject	192
OCCT Test Blueprint and Actual Item Counts: Grade 3 Mathematics	192
OCCT Test Blueprint and Actual Item Counts: Grade 4 Mathematics	193
OCCT Test Blueprint and Actual Item Counts: Grade 5 Mathematics	194
OCCT Test Blueprint and Actual Item Counts: Grade 6 Mathematics	195
OCCT Test Blueprint and Actual Item Counts: Grade 7 Mathematics	196
OCCT Test Blueprint and Actual Item Counts: Grade 8 Mathematics	197
OCCT Test Blueprint and Actual Item Counts: Grade 3 Reading	198
OCCT Test Blueprint and Actual Item Counts: Grade 4 Reading	199
OCCT Test Blueprint and Actual Item Counts: Grade 5 Reading	200
OCCT Test Blueprint and Actual Item Counts: Grade 6 Reading	201
OCCT Test Blueprint and Actual Item Counts: Grade 7 Reading	202
OCCT Test Blueprint and Actual Item Counts: Grade 8 Reading	203
OCCT Test Blueprint and Actual Item Counts: Grade 5 Science	204
OCCT Test Blueprint and Actual Item Counts: Grade 8 Science	205
OCCT Test Blueprint and Actual Item Counts: Grade 5 Social Studies	206
OCCT Test Blueprint and Actual Item Counts: Grade 7 Social Studies (Geography)	207
OCCT Test Blueprint and Actual Item Counts: Grade 8 Social Studies (U.S. History)	208
Appendix B A Statistical Investigation of Oklahoma Computer Disruptions	209

Acronyms and Abbreviations

LIU Language in Use

LOSS Lowest Obtainable Scale Score

MC Multiple-Choice 2PPC Two Parameter Partial Credit model MH Mantel-Haenszel 3PL Three Parameter Logistic model NCES National Center for Education ACE Achieving Classroom Excellence **Statistics AERA American Educational Research** NCLB No Child Left Behind Association NCME National Council on Measurement in APA American Psychological Association Education **AYP Adequate Yearly Progress** NGA National Governors Association **BR** Braille Center **BTC Building Test Coordinator** OAAP Oklahoma Alternate Assessment C³ Oklahoma's Core curriculum, the **Program** College, Career and Citizen Ready OAC Oklahoma Administrative Code CCSSO Council of Chief State School OCCT Oklahoma Core Curriculum Tests Officers OE Open-Ended **CE Critical Element** OMAAP Oklahoma Modified Alternate CFA Confirmatory Factor Analysis **Assessment Program** CR Constructed-Response **OP** Operational CSEM Conditional Standard Error of OSTP Oklahoma School Testing Program Measurement PASS Priority Academic Student Skills **DIF Differential Item Functioning** RIBs Rater Item Blocks DOK Depth of Knowledge RT Retest **DTC District Test Coordinator** SAS Statistical Analysis System EFA Exploratory Factor Analysis SD Standard Deviation EHS Electronic Handscoring System SDE Oklahoma State department of **ELL English Language Learners** Education **EOI End-of-Instruction** SEM Standard Error of Measurement **EQ** Equivalent SS Scale Score FN False Negative TA Test Administrator **FP** False Positive TAC Technical Advisory Committee GRT General Research Tape TCC Test Characteristic Curve HOSS Highest Obtainable Scale Score **TP Test Proctor** ICC Item Characteristic Curve **TPM Test Preparation Manual** IEP Individualized Education Program US DOE United States Department of **IRT Item Response Theory**

Education

WP Writing Prompt

Introduction

This report summarizes the research data analyses conducted on the Oklahoma Core Curriculum Tests, Grades 3 through 8 (OCCT 3–8) test administrations and provides data evidences in supporting the validity and reliability of the tests.

For the OCCT 3–8, Reading and Mathematics tests are administered in Grades 3–8; Science, Social Studies, and Writing in Grade 5; Geography in Grade 7; and Science, U.S. History, and Writing in Grade 8. All students must take the OCCT for content areas in which a modified assessment is not available. The Department of Special Education oversees the implementation of the Oklahoma Alternate Assessment Program (OAAP), or portfolio assessment, which includes all of the Grades 3–8 contents.

Within the state of Oklahoma, the development of the *Priority Academic Student Skills (PASS)* and most recently Oklahoma's Core Curriculum, the College, Career and Citizen Ready (C^3) content standards, the development of the Oklahoma School Testing Program (OSTP) items and operational test forms, the review of the alignment of the content to the test, the administrations of the test, the machine scoring and hand scoring of student responses, the setting of cut scores, and the psychometric analyses are all important steps in the process of developing a valid assessment system (Barton, 2007). This document serves to capture a small portion of the enormous amount of time and effort devoted to one of the OSTP assessments, the OCCT for Grades 3 through 8, in relation to the importance, reliability, and validity of the assessment as part of the Oklahoma assessment system.

The American Educational Research Association (AERA), American Psychological Association (APA), and National Council on Measurement in Education's (NCME) *Standards for Educational and Psychological Testing* (1999; *Standards for Testing*) are the guides by which this report provides various evidences of validity. The CTB/McGraw-Hill work process in the Oklahoma OCCT 3–8 for Spring 2013 has paid close attention to the *Standards for Testing*, and this report provides evidence that is appropriate to a statewide summative assessment. Because the results of this assessment are used as part of state and federal accountability systems, attention has also been paid to the federal guidance provided in the Standards and Assessments Peer Review Guidance (US DOE, 2004). Evidence within this report also relates to the Critical Elements (CE) as part of the guidance for Peer Review.

Section 1 - Overview

The Oklahoma Core Curriculum Tests (OCCT) assessments are state-mandated criterion-referenced tests that measure student proficiency in specific content areas. Each test has the purpose of measuring the student's knowledge relative to the Oklahoma Core Curriculum, the College, Career and Citizen Ready (C^3), Oklahoma's content standards. In Spring 2013, the OCCT assessments were administered to all eligible students in Grades 3 through 8. The OCCT covered: Mathematics and Reading for Grades 3 through 8; Science and Writing for Grades 5 and 8; and Social Studies for Grades 5, 7 (Geography), and 8 (U.S. History). Along with the Operational tests (OP), other form variations were administered for the OCCT: Equivalent forms (EQ), Braille forms (BR), and Large-Print forms. Field test forms were administered for Social Studies Grades 5, 7, and 8.

In the Fall of 2012, CTB/McGraw-Hill was contracted by the Oklahoma State Department of Education (SDE) to develop, administer, and maintain the Oklahoma School Testing Program (OSTP) OCCT and Oklahoma Modified Alternate Assessment Program (OMAAP) for Achieving Classroom Excellence (ACE) End-of-Instruction (EOI) and Grades 3–8. The purpose of this technical report is to provide objective information regarding technical aspects of the OCCT 3–8 assessments by specifying the technical details of the work accomplished from Summer 2012 (developed, administered, and processed by Pearson) through the end of Spring 2013 on these tests. This volume is intended to be one source of information to Oklahoma K–12 educational stakeholders (including testing coordinators, educators, parents, and other interested citizens) about the development, implementation, scoring, and technical attributes of the OCCT 3–8 assessments.

Other sources of information regarding the OSTP-ACE G3–8 tests include the administration manual OSTP 2012–2013 Test Preparation Manual found at: http://www.ok.gov/sde/documents/2013-10-17/2012-2013-test-prep-manual; interpretation manuals, implementation materials, and training materials for administrators, schools, and teachers, found at: http://www.ok.gov/sde/test-support-teachers-and-administrators; and teachers, students, and parent guides found at: http://ok.gov/sde/assessment-administrator-resources-administrators.

The Spring 2013 OCCT 3–8 field test items for the Mathematics and Reading Grades 3–8, Science Grades 5 and 8, and Social Studies Grades 5, 7, and 8 assessments were developed by Pearson in collaboration with the Oklahoma SDE. The assessments for these subjects were developed by CTB/McGraw-Hill in collaboration with the SDE, and were administered by the SDE. Note that there were other forms applied concurrently with the operational forms in each of the above administrations and for each of the contents: the Braille (BR) form, the Large-Print form, and the Equivalent (EQ) form.

Section 1.1. - Purpose

This report includes only data and analyses for the operational forms and content for the Spring 2013 administration. It begins with a description of the Oklahoma content standards, which are described in Section $1.2 - Oklahoma \, C^3$ Content Standards. All operational and field test items

for OCCT 3–8 Spring 2013 were subjected to cycles of reviews by the SDE and Pearson. A description of the item development process, along with a description of the alignment process and test development, is presented in complete detail in **Section 2 – Item and Test Development**. A detailed description of the administration processes is found in **Section 3 – Administration**, and a discussion of the operational population and the research samples utilized in the analysis is found in **Section 5 – Sampling Plan and Field Test Design**.

The Spring 2013 OCCT 3–8 scores for Mathematics and Reading Grades 3 through 8 were based on a post-equating design. The Science Grades 5 and 8 scores were analyzed for new scaling. The Social Studies Grade 5, Grade 7, and Grade 8 items were field test items only. A complete description of the operational and field test item analyses and the calibration/scaling and equating analysis is found in **Section 6 – Methods** and **Section 7 – Results**.

Section 1.2. - Oklahoma C³ Content Standards

CTB/McGraw-Hill developed the Spring 2013 Oklahoma OCCT 3–8 assessments to measure the *Oklahoma C* 3 Standards shown in Table 1.1. The objectives associated with the content and/or process standards tested are provided in Appendix A.

Table 1.1. '	Testable	Standards	for	OCCT	Grades	3 to	8
---------------------	----------	-----------	-----	------	--------	------	---

Mathematics Grades 3 to 8		
Standard 1.	Algebraic Reasoning: Patterns and Relationships	
Standard 2.	Number Sense and Operation	
Standard 3.	Geometry	
Standard 4.	Measurement	
Standard 5.	Data Analysis	
Reading Gr	rades 4 to 8 (Grade 3 in parentheses)	
Standard 1. (Standard 2.)	Vocabulary	
Standard 3. (Standard 4.)	Comprehension/Critical Literacy	
Standard 4. (Standard 5.)	Literature	
Standard 5. (Standard 6.)	Research and Information	
Science Grades 5 & 8		
Process/Inquiry Standards and Objectives		
Process 1.	Observe and Measure	
Process 2.	Classify	
Process 3.	Experiment	
Process 4.	Interpret and Communicate	
Grade 5 Content Standards		
Standard 1.	Properties of Matter and Energy	
Standard 2.	Organisms and Environments	
Standard 3.	Structures of the Earth and the Solar System	

 Table 1.1. Testable Standards for OCCT Grades 3 to 8 (continued)

Grade 8 Content Standards		
Standard 1.	Properties and Chemical Changes in Matter	
Standard 2.	Motion and Forces	
Standard 3.	Diversity and Adaptations of Organisms	
Standard 4.	Structures/Forces of the Earth/Solar System	
Standard 5.	Earth's History	
	Social Studies Grade 5	
Standard 1.	James Towne Settlement and Plimoth Plantation	
Standard 2.	Colonial America	
Standard 3.	American Revolution	
Standard 4.	Early Federal Period	
	Social Studies Grade 7 (Geography)	
Standard 1.	Geographic Tools/Geography Skills	
Standard 2.	Human and Physical Characteristics of Regions	
Standard 3.	Patterns of the Earth	
Standard 4.	Human Systems	
Standard 5.	Human/Environment Interaction	
Social Studies Grade 8 (U.S. History)		
Standard 1.	Causes and Events of the American Revolution	
Standard 2.	Foundations and Founders of the American Nation	
Standard 3.	Developing the American Government System	
Standard 4.	The Transformation of the United States to the Mid-1800s	
Standard 5.	Causes, Events, and Leadership in the Civil War	

Section 2 – Item and Test Development

In the Spring 2013 administration, there was one Operational form with embedded sets of field test items for the tests administered for Mathematics and Reading Grades 3–8, and Science Grades 5 and 8. For the Grade 5 Social Studies, Grade 7 Geography, and Grade 8 U.S. History tests, field test forms were administered instead. There were six field test forms for Mathematics and Reading Grades 3–8, and Science Grades 5 and 8. There were two field test forms for Grade 5 Social Studies, Grade 7 Geography, and Grade 8 U.S. History. A Braille form and an Equivalent form were produced for Mathematics and Reading Grades 3–8 and Science Grades 5 and 8. Because it was a field test year, no Equivalent forms were produced for Grade 5 Social Studies, Grade 7 Geography, and Grade 8 U.S. History.

The Braille form is usually a mirror of the operational administration. The Equivalent is designated as a breach form. A student could receive an Equivalent form for various reasons, including becoming ill during the test administration or experiencing any kind of security breach. The State Department of Education Office of Accountability and Assessments determines eligibility for an Equivalent form on a case-by-case basis.

Section 2.1 - Aligning Test to Oklahoma C³ Content Standards

In general, alignment is a process that provides experts the opportunity to make item-level judgments about the grade level, standards, and indicators to which items should be aligned. There are multiple points in the alignment process at which assessment items are either created or evaluated for alignment to content. Most tests, particularly high-stakes, large-scale assessments, are built via rigorous and well-researched methodologies. They are guided by well-defined content and by the boundaries within the content that can be reasonably assessed in a testing environment. Such guidance is typically in the form of item specifications and test blueprints. The item specifications help define which content standards can be assessed by a test (and which content standards are better assessed in the classroom), the breadth and depth of the content that may be limited for the test, and the format and types of items, or test questions appropriate for the content being assessed (e.g., multiple-choice or open-ended).

A list of the assessable standards for each subject is provided in Table 2.1. For Mathematics and Reading, the same assessable standards appear in each grade level.

Table 2.1. Testable Standards for OCCT Grades 3 to 8

Table 2.1. Testable Standard	is for OCC1 Grades 5 to 8							
<u> </u>	Mathematics Grades 3 to 8							
Standard 1.	Algebraic Reasoning: Patterns and Relationships							
Standard 2.	Number Sense and Operation							
Standard 3.	Geometry							
Standard 4.	Measurement							
Standard 5.	Data Analysis							
Reading G	Grades 4 to 8 (Grade 3 in parentheses)							
Standard 1. (Standard 2.)	Vocabulary							
Standard 3. (Standard 4.)	Comprehension/Critical Literacy							
Standard 4. (Standard 5.)	Literature							
Standard 5. (Standard 6.)	Research and Information							
	Science Grades 5 & 8							
OKC ³ Proc	cess/Inquiry Standards and Objectives							
Process 1.	Observe and Measure							
Process 2.	Classify							
Process 3.	Experiment							
Process 4.	Interpret and Communicate							
Gra	de 5 OK C ³ Content Standards							
Standard 1.	Properties of Matter and Energy							
Standard 2.	Organisms and Environments							
Standard 3.	Structures of the Earth and the Solar System							
Gra	Grade 8 OK C ³ Content Standards							
Standard 1.	Properties and Chemical Changes in Matter							
Standard 2.	Motion and Forces							
Standard 3.	Diversity and Adaptations of Organisms							
Standard 4.	Structures/Forces of the Earth/Solar System							
Standard 5.	Earth's History							
	Social Studies Grade 5							
Standard 1.	James Towne Settlement and Plimoth Plantation							
Standard 2.	Colonial America							
Standard 3.	American Revolution							
Standard 4.	Early Federal Period							
Socia	al Studies Grade 7 (Geography)							
Standard 1.	Geographic Tools/Geography Skills							
Standard 2.	Human and Physical Characteristics of Regions							
Standard 3.	Physical Systems of the Earth							
Standard 4.	Human Systems							
Standard 5.	Human/Environment Interaction							
Socia	ll Studies Grade 8 (U.S. History)							
Standard 1.	Causes and Events of the American Revolution							
Standard 2	The Revolutionary Era							
Standard 3.	Developing the American Government System							
Standard 4.	The Transformation of the United States to the Mid-							
Standard 5.	1800s Causes, Events, and Leadership in the Civil War							
<u> </u>	*							

Blueprints

The test blueprint defines the proportion of the content to be covered on the test that best reflects the proportional importance and coverage of standards in the classroom.

In addition to the test Blueprints provided by the SDE (<u>http://www.ok.gov/sde/test-support-teachers-and-administrators</u> for blueprints), Table 2.2 describes four criteria for test alignment with the *Oklahoma C*³ Content Standards and objectives.

Table 2.2. Criteria for Aligning the Test with *Oklahoma* C^3 Standards and Objectives

Tuble 2:2: Citteria for Thighing the	e rest with Oktanoma C Standards and Objectives
1. Categorical Concurrence	The test is constructed so that there are at least six items measuring each <i>Oklahoma C</i> ³ Standard with the content category consistent with the related standard. The number of items, six, is based on estimating the number of items that could produce a reasonably reliable estimate of a student's mastery of the content measured.
2. Range of Knowledge	The test is constructed so that at least 50% of the objectives for an <i>Oklahoma</i> C^3 Standard have at least one corresponding assessment item.
3. Balance of Representation	The test is constructed according to the alignment blueprint, which reflects the degree of representation given on the test to each <i>Oklahoma C</i> ³ Standard and Objective in terms of the percent of total test items measuring each standard and the number of test items measuring each objective.
4. Source of Challenge	Each test item is constructed in such a way that the major cognitive demand comes directly from the targeted $Oklahoma\ C^3$ skill or concept being assessed, not from specialized knowledge or cultural background that the test-taker may bring to the testing situation.

Data review represents a critical step in the test development cycle. At the data review meeting, the SDE and CTB/McGraw-Hill staff had the opportunity to review actual student performance on the newly-developed and field tested Multiple-Choice (MC) items across the subjects based on the Spring 2013 field test administrations. The data review focused on the content validity, curricular alignment, and statistical functioning of field tested items prior to selection for operational test forms. The field test results used in the data review provided evidence that the items were designed to yield valid results and were accessible for use by the widest possible range of students. The review of student performance should provide evidence regarding the fulfillment of requirement 200.2(b)(2) of NCLB. The purpose of the review meeting was to ensure that psychometrically-sound, fair, and aligned items are used in the construction of the OCCT 3–8 assessments and entered into the respective item banks. CTB/McGraw-Hill provided technical and psychometric expertise to provide a clear explanation about the items' content, the field test process, the scoring process, and the resulting field test data to ensure the success of these meetings and the defensibility of the program.

Data review meetings were a collaborative effort between the SDE and CTB/McGraw-Hill. The SDE administrators and content specialists attended the meetings facilitated by CTB/McGraw-Hill content specialists and research scientists who trained the SDE staff on how to interpret and review the field test data. Meeting materials included a document explaining the flagging criteria, a document containing flagged items, and the item images. CTB/McGraw-Hill discussed with the SDE the analyses performed and the criteria for flagging the items. Flagged items were then reviewed, and decisions were made as to whether to accept the item, accept the item for future re-field testing with revisions, or reject the item. Review of the data included presentation of p-value, point-biserial correlation, point-biserial correlation by response option, response distributions, mean overall score by response option, and indications of item Differential Item Functioning (DIF) and Item Response Theory (IRT) misfit. Items failing to meet the requirements of sound technical data were carefully considered for rejection by the review panel, thereby enhancing the reliability and improving the validity of the items left in the bank for future use. While the panel used the data as a tool to inform their judgments, the panel (and not the data alone) made the final determination as to the appropriateness or fairness of the assessment items. The flagging criteria for the OCCT 3–8 assessments are as follows:

- p-value <.25 or >.90
- point-biserial correlation <.20
- distractor point-biserial correlation >.05
- differential Item functioning (DIF): test item biases for subgroups
- IRT misfit as flagged by the Q_1 index (see Section 6.3 Calibration & Item Fit)

Section 2.2 - Item Pool Development and Selection

To ensure content validity of the Oklahoma OCCT 3–8 tests, CTB/McGraw-Hill content experts closely studied the *Oklahoma C³* Standards and worked with Oklahoma content area specialists, teachers, and assessment experts to gather a pool of existing items that measure Oklahoma's Assessment Frameworks (i.e., *Oklahoma C³*) for each subject. Once the need for field test items was determined, based on the availability of items for future test construction, a pool of items that measured *Oklahoma C³* in each subject was developed. These items were developed under universal design guidelines set by the SDE and carefully reviewed and discussed by Content and Bias/Sensitivity Review Committees to evaluate not only content validity, but also plain language and the quality and appropriateness of the items. These committees were comprised of Oklahoma teachers and SDE staff. The committees' recommendations were used to select and/or revise items from the item pool used to construct the field test portions of the Spring 2013 assessments.

The source of the operational items included a pool of previously field tested or operationally-administered items ranging from the Spring 2006 through the Spring 2012 administrations for Mathematics Grades 3–8, Reading Grades 3–8, and Science Grades 5 and 8. The items were calibrated live using data from the operational administrations to estimate parameters for these items.

Item selection and form development for Spring 2013 was completed as a collaborative effort between staff at the SDE and CTB/McGraw-Hill Content Development and psychometricians (Research). The primary criterion for the selection of items was to meet the content

specifications represented by test blueprints and statistical guidelines. Within the limits set by these requirements, such as classical and item response theory statistics, described in **Section 6** – **Methods**, editors selected items with the best content-relevant and statistical characteristics.

The OCCT 3–8 Operational tests for the Spring 2013 cycle were built by including previously field tested and operational items. Content experts also targeted the percentage of items measuring various Depth of Knowledge (DOK) levels for assembling the tests. Table 2.3 provides the DOK level percentages for the Spring 2013 operational assessments.

Table 2.3 Percentage of Items by Depth of Knowledge Levels for OCCT 3–8 Assessments

		1		2		3	
Subject	Grade	Target	Actual	Target	Actual	Target	Actual
	3	20-25	18	65-70	76	5–15	6
	4	20-25	28	65-70	66	5–15	6
Mathamatica	5	20-25	16	65-70	70	5–15	14
Mathematics	6	10-15	12	65-70	76	15-25	12
	7	10-15	14	65-70	64	15-25	22
	8	10-15	10	65-70	78	15-25	12
	3	20–25	16	65-70	68	5–15	16
	4	20-25	12	65-70	76	5–15	12
Daadina	5	20-25	10	65-70	78	5–15	12
Reading	6	10-15	12	65-70	74	15-25	14
	7	10-15	10	65-70	76	15-25	14
	8	10-15	16	65-70	66	15–25	18
Caianaa	5	20–25	18	65-70	62	5–15	20
Science	8	10-15	13	65-70	58	15-25	29

Bias and Sensitivity

One aspect of the data review meetings was to assess potential bias based on DIF results and item content. Although bias in the items had been deflected by writer training and review processes, there is always the potential for bias to be detected through statistical analysis. This step in the development cycle is essential because the SDE and CTB/McGraw-Hill seek to avoid inclusion of items biased in any manner against a group, because these items may lead to inequitable test results. As described earlier, all field test items were analyzed statistically for differential item functioning (DIF) using the field test data. At the data review meetings, a CTB/McGraw-Hill research scientist explained the significance of DIF, in terms of level and the direction of the DIF flags. The data review panel reviewed the item content, the percentage of students selecting each response option, and the point-biserial correlation for each response option by gender and ethnicity for all items flagged for DIF. The data review panel was then asked if there was context (for example, cultural barriers) or language in an item that might result in bias (i.e., an explanation for the existence of the statistical DIF flag).

Once items were written, they were reviewed to assure the items were appropriate for and aligned to the grade level, the $Oklahoma\ C^3$ Standard and objective, and the DOK intended. The items were also reviewed to assure they were accurate, written at an appropriate reading level for the grade, written at an appropriate level of difficulty, and did not contain sensitive or potentially biasing issues.

Statistical bias analyses were performed as part of the development, review, and fairness efforts. Field test items were analyzed for statistical bias utilizing the Mantel-Haenszel method (Holland and Thayer, 1988; Michaelides, 2008). The results for Spring 2013 are found in **Section 7** – **Results** of this report.

Section 2.3 - Configuration of the Spring 2013 Tests

For Spring 2013, CTB/McGraw-Hill Content Development selected items from the available item pools that had been previously field tested and approved by the SDE staff for usage on the operational assessments. The operational items on the Mathematics and Reading tests had appeared previously in the years 2008–2012. The operational items on the Science tests had appeared previously in the years 2007–2012. No operational items appeared on the Grade 5 Social Studies, Grade 7 Geography, and Grade 8 U.S. History tests. Field test items were selected from items that were approved by the SDE staff and Oklahoma teachers. Most of the field test items on the Mathematics, Reading, and Science tests had never been field tested; however, some items had been previously field tested, but required revisions and additional field testing. CTB/McGraw-Hill Research analyzed the selected items and provided feedback to Content Development regarding the best set of items to serve as the Spring 2013 operational form.

Section 2.4 - Operational and Field Test Items by Content Area

Table 2.4, provides an overview of the number of operational and field test items that composed the Spring 2013 OCCT 3–8 assessments. The Spring 2013 test was composed of one core operationally-scored form for each subject, except for Grade 5 Social Studies, Grade 7 Geography, and Grade 8 U.S. History. Field test items were embedded in the operational test forms for all content areas to build the item bank for future use. The forms in the Spring 2013 assessments were randomly assigned within classrooms to obtain randomly-equivalent samples of examinees for the field test items.

Table 2.4 Configuration of the OCCT 3–8 Tests for Spring 2013

						Maximum	Possible Po	ints on OP	Γest Items
			Item Counts			(Per Form)*			
			(F	Per Fo	orm)	OP		FT	
Subject	Grade	Forms	OP	FT	Test	MC	OE	MC	OE
	3	1	50	10	60	50		10	
	4	1	50	10	60	50		10	
Mathematics	5	1	50	10	60	50		10	
Mamemanes	6**	1	50	10	60	50		10	
	7	1	50	10	60	50		10	
	8	1	50	10	60	50		10	
	3	1	50	10	60	50		9	2
	4	1	50	10	60	50		9	2
Dandina	5	1	50	10	60	50		9	2
Reading	6	1	50	10	60	50		9	2
	7	1	50	10	60	50		9	2
	8	1	50	10	60	50		9	2
Science	5	1	45	10	55	45		10	
Science	8	1	45	10	55	45		10	
	5	1		60	60			60	
Social Studies	7	1		60	60			60	
	8	1		60	60			60	

Note: OP = Operational; FT = Field Test; MC = Multiple Choice; OE = Open-ended; * = For the Mathematics and Reading Tests, five field test items were aligned to the Common Core standards on each test form. ** = one Grade 6 Operational item was suppressed on the test, reducing the total possible points to 49.

Section 3 – Administration

To ensure a valid and reliable assessment, the OCCT 3–8 assessments are first constructed in alignment with the *Oklahoma C*³ Standards (now called the Oklahoma Academic Standards) by the Oklahoma SDE in collaboration with CTB/McGraw-Hill. The tests are then administered and scored according to sound measurement principles for the purpose of evaluating validity. Additionally, best practices require that the test administrating and scoring entities perform their tasks in a consistent manner throughout the state so that all students have a fair and equitable opportunity for a score that reflects their achievement in each subject.

Schools play a key role in administering the OCCT 3–8 assessments in a manner that is consistent with established procedures, monitoring the fair administration of the assessment, and working with the SDE office to address deviations from established assessment administration best practice procedures. School faculty members play a vital role in the success of OCCT 3–8 assessments by ensuring fairness in administration of the test.

Section 3.1 - Packaging and Shipping

In order to provide secure and dependable services for the shipping of the OCCT 3–8 assessment materials, CTB/McGraw-Hill's Transportation Department maintains the quality and security of material distribution and return by hiring reputable carriers that possess the ability to trace shipments. CTB/McGraw-Hill uses all available tracking capabilities to provide status information and early opportunities for corrective action.

Materials are packaged by school and delivered to the district test coordinators. Each shipment to a district contains a shipping document set that includes a packing list for each school's materials.

Materials are packaged using information provided by the test coordinators through the Oklahoma WAVE system. Oklahoma educators also use this system to provide CTB/McGraw-Hill with the precode information needed to print student barcode labels, which are affixed on answer documents or consumable test books. The bar-coding of all secure materials at the time of production allows for accurate tracking of these materials through the entire packing, delivery, and return process. This allows CTB/McGraw-Hill to inventory all materials throughout the packaging and delivery process.

Section 3.2 - Materials Return

The Test Preparation Manual and Materials Return poster provide clear instructions on how to assemble, box, label, and return testing materials after test administration. CTB/McGraw-Hill utilizes double-column boxes to distribute and collect test materials, and makes additional cartons available for order to meet the various return needs of the districts.

Stack cards and paper bands are provided to group and secure used student response booklets for scoring. Color-coded return labels with pre-printed return information are also provided. These

labels facilitate the sorting of each carton and its contents upon receipt at CTB/McGraw-Hill's Data Processing Facility.

Section 3.3 - Materials Discrepancies Process

The scanning process allows CTB/McGraw-Hill to capture MC responses and student writing images. Test security form information is also captured electronically via a secure database. All scorable material discrepancies are captured, investigated by the CTB/McGraw-Hill Oklahoma Help Desk, and reported. The results are subsequently reported to the SDE.

A pre-determined date is set by the SDE and CTB/McGraw-Hill in order to account for any materials that arrive after the scheduled deadline. Late arriving material is processed up to the agreed upon date, at which point the Oklahoma SDE must be notified of any late arriving documents and render a processing decision. Following an initial call campaign to all districts with outstanding secure material, the CTB/McGraw-Hill Oklahoma Program Management team notifies the SDE regarding unresolved material discrepancies presented in a preliminary file. A subsequent call or email campaign may be conducted based on the results of the initial effort. Final missing inventory reports are then provided to the SDE. CTB/McGraw-Hill takes security seriously and makes every effort to recover missing material.

Section 4 – Scoring

The Oklahoma Spring 2013 OCCT Grades 3–8 test books included items that were machine scored (MC items), and extended-writing prompts (WPs) that were scored by trained human or "hand" scorers (raters). OCCT Grades 3–8 test books also included six field test constructed-response items (CR) for each of the six Reading test forms. These items were scored by trained "hand" scorers. The MC items were scanned and scored as correct or incorrect according to predefined answer keys. Items that had multiple marked answers or were blank were treated as incorrect.

The Writing test is one portion of the OCCT 3–8 test. Writing is assessed at Grades 5 and 8. Each writing response receives two types of scores. First, a series of analytic scores focus on specific writing traits. These traits receive scores of 1 to 4. Next, a composite score is derived by providing a differential weight or percentage to the score in each of the analytic traits and applying a formula to obtain the final Writing score. Condition codes are used if the student's writing response is unscorable. The results are reported with the MC results.

Scoring Rubrics

Analytic scoring rubrics were provided by the Oklahoma SDE. The rubrics focus on five specific writing skills: Ideas and Development; Organization, Unity, and Coherence; Word Choice; Sentences and Paragraphs; and Grammar, Usage, and Mechanics. Each is rated from 4 (the highest score) to 1 (the lowest score). In addition, the skill areas of Ideas and Development, and Organization, Unity, and Coherence require that the composition be written in a mode that is appropriate for both audience and purpose. Three modes are emphasized: Opinion/Argument, Informative, and Narrative.

Anchor Papers

The 2013 Operational Writing prompts for Grades 5 and 8 were new and required range-finding along with four new field test prompts for each of Grades 5 and 8. Prior to scoring, the prompts underwent extensive range-finding with the two SDE representatives, on May 6–7, 2013, in Oklahoma City, and in six subsequent conference calls. Rubrics and Writing prompts were reviewed. Anchor candidates were discussed and final anchors selected for use during the training and scoring activities. Three anchor papers per score point were selected for each writing skill area. The range-finding discussions were helpful in defining the parameters of the scoring requirements in the analytic Writing rubrics and in providing insights and summary statements for training of raters.

Section 4.1 – Hand Scoring

Hand scoring involves training and qualifying team leaders and raters, monitoring scoring accuracy and production, and ensuring the security of both the test materials and the scoring facilities. An explanation of the training and qualification procedures follows.

Training, Qualification, and Checkset Materials

All raters were trained and qualified in specific rater item blocks (RIBs), each of which consisted of a single writing prompt. The Operational prompts for Grades 5 and 8 were scored concurrently by two separate groups of raters. The Operational Writing prompts were scored prior to the field test prompts. Four field test prompts each for Grades 5 and 8 were scored concurrently by eight separate groups of raters. Raters and team leaders were trained using the following steps:

- Provide a general introduction to OCCT 3–8
- Introduce and review the writing prompts and scoring rubrics
- Review anchor papers and training papers, and answer questions arising from established scores
- Explain scoring strategies, followed by a question-and-answer period
- Administer Qualifying Round 1
- Review Qualifying Round 1 established scores and answer questions arising from the scores
- Administer Qualifying Round 2 (if necessary)
- Explain condition codes and sensitive paper procedures
- Explain unscannable image procedures

All raters were trained and qualified using the same procedures and criteria used for the team leaders, who had been trained prior to the training of the raters. The qualification process was conducted through the Online Training System and proctored by Handscoring Supervisors and team leaders. The Online Training System enabled supervisors to determine whether a rater had qualified upon completion of the set. The CTB/McGraw-Hill handscoring supervisors proctored the training of the team leaders.

Throughout the course of hand scoring, calibration sets of pre-scored papers (checksets/validity sets) were administered daily to each rater to monitor scoring accuracy and to maintain a consistent focus on the established rubrics and guidelines. Checksets were executed via imaging software that provided images in a manner so that the rater did not know when a checkset was being administered.

The CTB/McGraw-Hill Data Monitoring staff ran inter-rater reliability reports throughout live scoring to look for any raters who were struggling and in need of retraining. Retraining involved a one-on-one discussion between the team leader (or Handscoring Supervisor) and the rater, who discussed the scoring concerns as well as the scoring guides and, if necessary, training papers. If the rater's accuracy on checkset scores did not meet the quality standards after this retraining, they were dismissed from the project immediately.

In addition to the checkset process, CTB/McGraw-Hill's handscoring protocol included the use of read-behinds (spot-checks during live scoring). The read-behind was another valuable rater-reliability monitoring technique that allowed a team leader to review a rater's scored documents and provide feedback and counseling as appropriate.

Selection of Handscorers

CTB/McGraw-Hill and Kelly Services, Inc., strive to develop a highly qualified, experienced core of raters so that the integrity of all projects is appropriately maintained.

CTB/McGraw-Hill requires that all content experts, team leaders, and raters possess a bachelor's degree or higher. Kelly Services, Inc., carefully screened all new applicants and required them to produce either a transcript or a copy of the degree. Kelly Services, Inc., also required a one- to two-hour interview/screening process. Individuals who did not present proper documentation or had less than desirable work records were eliminated during this process. Kelly Services, Inc., verified that 100% of all potential raters met the degree requirement. All experienced raters and team leaders had already successfully completed the screening process.

All potential raters completed a pre-interview activity. For some parts of the pre-interview activity, applicants were shown examples of test responses and were supplied with a scoring guide. In a brief introduction, they became acquainted with the application of a rubric. After the introduction, applicants applied the scoring guide to score the sample responses.

Each applicant's scores were used for discussion during the interview process to determine the applicant's trainability as well as an ability to understand and implement the standards set forth in the sample scoring guide.

Kelly Services, Inc., interviewed each applicant and determined the applicant's suitability for a specific content area and grade level. Applicants with strong leadership skills were interviewed further to determine whether they were qualified to be team leaders.

When Kelly Services, Inc., determined that applicants were qualified, they were recommended for employment. All assignments were made according to availability and suitability. Before being hired, all employees were required to read, agree to, and sign a nondisclosure agreement outlining CTB/McGraw-Hill business ethics and security procedures.

Security guards were on-site whenever employees were present in the building. All employees were issued identification badges and required to wear them in plain view at all times. Visitors and employees who presented at the building entrance without their issued ID badges were issued temporary visitors' badges good for that one day only and were required to wear them in plain view. In addition, employees were advised to arrive the following day with their previously-issued ID badges worn in plain view. All employees and visitors were subject to inspection of their personal effects.

Handscoring Process

Writing prompts were evaluated on each of the five analytic traits and in accordance with Oklahoma's rubric. Using CTB/McGraw-Hill's Electronic Handscoring System (EHS), all writing responses were scored independently by two raters. The EHS employed an automated, random distribution of papers for first reads, second reads, and resolution reads across all readers

designated to score that item. No student biographical or identifiable information was available to raters; all imaged items were scored as blind reads.

Rater Reliability

Section 8 – Summary of Reliability and Validity describes the outcomes of inter-reliability. The inter-rater reliability coefficients for the operational writing prompt are presented in Table 4.1 for Grade 5 and Table 4.2 for Grade 8.

Table 4.1 Inter-Rater Reliability Coefficients for the Operational Writing Prompt, Grade 5

				%	Checkset		
Item Form	Trait	Score			Perfect	Average	
	FORM	1 rait	Points	Perfect	Adjacent	+	Agreement
						Adjacent	Percentages
		1	1-4	62.9	34.8	97.7	76.9
Grade 5		2	1-4	65.3	33.4	98.7	79.5
Operational	1	3	1-4	64.6	32.0	96.6	77.5
Writing		4	1-4	64.4	33.4	97.8	77.2
		5	1-4	63.3	34.1	97.4	77.6
		1	1-4	70.3	26.8	97.1	89.0
Grade 5		2	1-4	66.7	30.4	97.1	90.9
Field Test	1	3	1-4	61.4	35.6	97.0	85.4
Writing		4	1-4	63.0	34.6	97.6	83.1
		5	1-4	61.7	35.6	97.3	81.7
Grade 5 Field Test 2 Writing		1	1-4	60.8	36.6	97.4	68.7
		2	1-4	60.8	37.0	97.8	60.1
	2	3	1-4	56.5	40.6	97.1	51.4
		4	1-4	55.6	42.4	98.0	62.1
		5	1-4	55.9	41.8	97.7	74.5
		1	1-4	69.2	26.4	95.6	78.2
Grade 5		2	1-4	72.6	22.0	94.6	78.2
Field Test	3	3	1-4	59.9	33.2	93.1	79.0
Writing		4	1-4	62.2	31.4	93.6	77.4
		5	1-4	61.2	31.4	92.6	68.1
		1	1-4	61.1	33.6	94.7	73.6
Grade 5		2	1-4	67.6	31.0	98.6	64.8
Field Test	4	3	1-4	62.7	35.6	98.3	73.1
Writing		4	1-4	67.3	32.0	99.3	63.4
		5	1-4	69.3	29.8	99.1	84.7

Table 4.2 Inter-Rater Reliability Coefficients for the Operational Writing Prompt, Grade 8

				%	Checkset		
Item Form	TT '4	Score			Perfect	Average	
	FORM	Trait	Points	Perfect	Adjacent	+	Agreement
						Adjacent	Percentages
		1	1-4	58.0	38.8	96.8	70.4
Grade 8		2	1-4	57.6	39.3	96.9	71.7
Operational	1	3	1-4	57.2	39.9	97.1	70.1
Writing		4	1-4	57.8	39.5	97.3	70.2
		5	1-4	57.3	39.8	97.1	67.1
		1	1-4	61.7	35.6	97.3	74.4
Grade 8		2	1-4	61.4	36.6	98.0	76.2
Field Test	1	3	1-4	58.7	39.6	98.3	74.4
Writing		4	1-4	57.7	40.0	97.7	71.3
		5	1-4	61.7	36.2	97.9	72.6
		1	1-4	60.8	34.2	95.0	70.0
Grade 8 Field Test 2 Writing		2	1-4	58.7	37.0	95.7	72.8
	3	1-4	60.8	36.8	97.6	63.1	
		4	1-4	58.7	38.8	97.5	58.5
		5	1-4	61.9	35.0	96.9	60.4
		1	1-4	58.4	35.6	94.0	62.5
Grade 8		2	1-4	60.7	34.6	95.3	69.2
Field Test	3	3	1-4	55.7	38.2	96.9	63.4
Writing		4	1-4	58.7	38.2	96.9	69.2
		5	1-4	56.7	39.2	95.9	66.1
		1	1-4	61.1	35.6	96.7	73.0
Grade 8		2	1-4	61.1	35.0	96.1	72.6
Field Test	4	3	1-4	60.4	37.0	97.4	73.3
Writing		4	1-4	60.4	36.6	97.0	68.4
		5	1-4	62.0	34.4	96.4	64.6

Section 5 - Sampling Plan and Field Test Design

Section 5.1 - Sampling Plan

A sample representative of the population of Oklahoma students was used for the Spring 2013 equating because final scale scores and performance levels should be reported within two weeks of the closed testing window. To meet this reporting schedule, some students' data were prioritized in the scanning and scoring process and used throughout item level analyses, calibration, and equating. Once the data was available, CTB Research conducted a data integrity check and compared the sample selection (expected) to the 2012 sample to assure that the sample was representative. Table 5.1 shows equating sample size and respective percentage of the population for each grade and content area of the Spring 2013 administration. Because population includes valid students only and a validation process happened after equating, samples can include more students than population, such as for Reading Grade 8. For Grades 3, 4, and 5, samples were used for equating; while for Grades 6, 7, and 8, almost whole population datasets were used. Grades 3, 4, and 5 students took paper-pencil tests and Grades 6, 7, and 8 students took online tests. CTB Research received paper-pencil tests results last due to necessary pickup and transit time.

Table 7, in the **Tables** section, provides the proportion of students in the sample and within the Spring 2013 population that came from each of the subgroups: gender, ethnicity, special population (ELL, IEP, Section 504, and accommodated), and socio-economic status (SES Low and SES High). SES Low flag is for students who received free lunch. It is clear from these tables that the sample is also representative of the state's population, even across most of the subgroups, with the exception of American Indian/Alaskan, which is overrepresented in Grades 3–5 Mathematics. The differences between the sample and the state tend to be less than +/- 6% with a median difference of 0.17 (absolute value).

No sampling decreases or increases were required since the sample received was well representative of the target or expected sample, and therefore, representative of the population of students in Oklahoma.

Table 5.1. Equating Sample Size for Spring 2013 and Respective Percentage of the Population for Each Grade and Content

101 Euch Grade and Content									
Content	Grade	Samples	Population	Percent					
	3	7064	46316	15					
	4	6175	45383	14					
Math	5	5707	44295	13					
Main	6	42208	43222	98					
	7	42422	43146	98					
	8	41573	41377	100					
	3	6986	45683	15					
	4	6094	44704	14					
Reading	5	5516	43798	13					
	6	42173	42971	98					
	7	42613	43368	98					
	8	41836	42341	99					
Science	5	36251	44805	81					
	8	33941	44209	77					

Section 5.2 - Field Test Design

New items are field tested to build up the item bank for future form selections. An embedded field test design was used where newly developed field test items were embedded throughout the test. The advantage of an embedded field test design is that test-takers do not know where the field test items are located and therefore students' motivation for operational and field test items are the same. Ten multiple-choice field test items per form were placed in common positions across Mathematics, Reading, and Science forms.

Section 5.3 - Data Checking Activities

During the field test data analysis, CTB conducted detailed data checking and applied the following data cleaning exclusionary rules.

5.3.1 Suppressed/Omitted/Invalidated cases

Eliminate suppressed/omitted/invalidated cases flagged in the WinScore files. Eliminate cases that have five or fewer valid attempts.

5.3.2 Duplicate cases

Check and eliminate any duplicate cases by checking student ID (if available), first and last name, middle initial, GIS_CD (GIS code normally contain the district and school ID), teacher name, school, birthday, gender, and response vectors.

5.3.3 Non-public schools

The non-public schools were excluded. Those schools are:

Copyright © 2013 by Oklahoma State Department of Education.

- Oklahoma School for the Deaf
- Oklahoma School for the Blind
- Riverside Indian School
- Sequoia Indian School
- Jones Academy

5.3.4 Second-timers

Students who took the test for a second time were excluded as well.

Section 6 - Methods

The Spring 2013 OCCT 3–8 program was based on the application of a post-equating method using anchor items and equating samples. Verification of the equating samples was described in **Section 5 – Sampling Plan and Field Test Design**. A series of item-level analyses were conducted. These analyses were highly scrutinized to confirm that score keys were accurately and systematically applied and that the summary statistics, such as the item difficulties (*p*-values) and reliabilities (point biserial correlations), were comparable across administrations. CTB/McGraw-Hill Content Development completed a review of all items flagged for possible mis-keys and approved the score keys that were applied. The items were then scaled using the item response theory (IRT) models customary for OCCT 3–8: the three-parameter logistic (3PL) for MC items and the two-parameter partial credit (2PPC) models for Writing prompts. The following section describes the methods used in the analyses of the operational test items.

Section 6.1 - Classical Item Analyses

Item Level Analyses

Each operational test item was first reviewed in terms of classical raw score statistics. Each item was reviewed for frequency distribution (number of students responding for each answer choice or score level), overall p-value (proportion of students choosing the correct answer), and point biserial or item-test correlation (how correlated each individual item is with the test as a whole based on the correct response). Typically, p-values should range between 0.25 and 0.90. Items with a p-value less than 0.25 are considered more difficult because fewer than 25% of the students are achieving the correct answer. Values greater than 0.90 indicate a fairly easy item because more than 90% of students are achieving the correct answer. A small number of easy items are included to motivate low-performing students, and a small number of difficult items are included to motivate high-performing students. With newly-tested content, the p-values may dip lower than 0.25, at which point the item should be evaluated in light of the newness of content or students' opportunity to learn the content. Point biserials or item-test correlations are usually in the range of 0.30 and above, although some items can be acceptable when as low as 0.15. The point biserials of each item's distractors, or incorrect responses, were also analyzed, as well as any distractor with a positive point biserial, either of which was reviewed for the possibility of an additional correct response or no correct response.

It is also important to track the rate at which students do not respond to, or omit, items. Omitted items receive a zero score. The rate of omission often provides some information about test times, or speediness, particularly if there is a high rate of items omitted at the end of a test session. It also provides an indication of items that may simply be unclear or illogically presented. When more than 5% of students omit an item, the item is reviewed by both CTB Research and Publishing/Content Development and shared with the SDE.

A summary comparison of the classical statistics between the Spring 2011, Spring 2012, and Spring 2013 OCCT 3–8 results is presented in Table 8. Typically, differences less than about |0.05| are desirable and, as can be seen, p-values and mean item-test correlation differences were within expectation.

A detailed summary of the item level classical raw score statistics and omission rates for Spring 2013 and a comparison to Spring 2011 is provided in **Section 7 – Results**.

Section 6.2 - Differential Item Functioning (DIF)

One of the goals of the OCCT 3-8 assessments is to assemble a set of items that provides a measure of a student's achievement that is as fair and accurate as possible for all subgroups within the population. Differential item functioning (DIF) analysis refers to statistical procedures that assess whether items are differentially difficult for matched-achievement students across reference and focal subgroups (the latter being the group of interest). DIF procedures typically control for overall between-group differences on a criterion, usually total test scores. Betweengroup performance on each item is then compared within sets of examinees having the same total test scores. If the item is differentially more difficult for an identifiable subgroup when conditioned on achievement, the item may be measuring something different from the intended construct. However, it is important to recognize that the flagging of items for DIF might be related to actual differences in relevant knowledge or skills or statistical Type I errors. As a result, DIF statistics are used only to identify potential sources of item bias. Subsequent review by content experts and bias committees are required to determine the source and meaning of performance differences. For OCCT 3-8, DIF analyses are conducted across gender (males/females) and ethnicity—focal subgroups African American (not Hispanic), American Indian/Alaskan Native, Asian, Hispanic, and Multiracial versus the reference group White (not Hispanic).

The Mantel-Haenszel DIF statistic (Holland and Thayer, 1988; Michaelides, 2008) was used for the OCCT 3–8 operational tests. It matches students across the reference and focal groups based on their overall test performance, and provides a chi-square to test whether the odds of answering an item correctly are similar for both the reference and focal groups. The items were classified into three categories on the basis of the MH DIF chi-square statistics and the MH delta (Δ) value of A, B, or C for either dichotomous or polytomous items (see Dorans & Holland, 1993; Zieky, 1993; and Michaelides, 2008), where items classified as A are interpreted as having no DIF and items classified as C are interpreted as having potentially severe DIF. The item flag classifications are made as follows:

- The item is classified into the C category if MH DIF is significantly different from zero (p < 0.05), and the absolute value of MH delta is greater than or equal to 1.5.
- The item is classified into the B category if MH DIF is significantly different from zero (p < 0.05), and the absolute value of MH delta is between 1.0 and 1.5.
- The item is classified into the A category if MH DIF is not significantly different from zero ($p \ge 0.05$), or if the absolute value of MH delta is less than 1.0.

Section 6.3 - Calibration & Item Fit

Item Response Theory (IRT) Models

Item response theory (IRT) allows comparisons between items and examinees, even those from different test forms, by using a common scale for all items and examinees (i.e., as if there were a hypothetical test that contained items from all forms). The three-parameter logistic (3PL) model (Lord & Novick, 1968; Lord, 1980) was used to analyze item responses on the MC items. For analysis of the CR items, the two-parameter partial credit model (2PPC) (Muraki, 1992; Yen, 1993) was used.

IRT is a statistical methodology that takes into account the fact that not all test items are alike and that all items do not provide the same amount of information in determining how much a student knows or can do. Computer programs that implement IRT models use actual student data to estimate the characteristics of the items on a test, called "parameters." The parameter estimation process is called "item calibration."

IRT models typically vary according to the number of parameters estimated. For the OCCT 3–8 tests, three parameters are estimated: the discrimination parameter, the difficulty parameter(s), and, for MC items, the guessing parameter. The discrimination parameter is an index of how well an item differentiates between high-performing and low-performing students. An item that cannot be answered correctly by low-performing students, but can be answered correctly by high-performing students, will have a high discrimination value. The difficulty parameter is an index of how easy or difficult an item is. An item will be more difficult if the difficulty parameter is higher. The guessing parameter is the probability that a student with very low ability will answer the item correctly.

Because the characteristics of MC and CR items are different, two IRT models were used in item calibration. The three-parameter logistic (3PL) model (Lord & Novick, 1968; Lord, 1980) was used in the analysis of MC items. In this model, the probability that a student with ability θ responds correctly to item i is

$$P_{i}(\theta) = c_{i} + \frac{1 - c_{i}}{1 + \exp[-1.7a_{i}(\theta - b_{i})]},$$
(1)

where a_i is the item discrimination, b_i is the item difficulty, and c_i is the probability of a correct response by a very low-scoring student.

For analysis of the CR items, the 2PPC model was used. The 2PPC model is a special case of Bock's (1972) nominal model. Bock's model states that the probability of an examinee with ability θ having a score (k-1) at the k^{th} level of the j^{th} item is

$$P_{jk}(\theta) = P(x_j = k - 1 | \theta) = \frac{\exp Z_{jk}}{\sum_{i=1}^{m_j} \exp Z_{ji}}, k = 1 \dots m_j,$$
(2)

Copyright © 2013 by Oklahoma State Department of Education.

where

$$Z_{jk} = A_{jk}\theta + C_{jk} \tag{3}$$

and k is the item response category $(k = 1, 2, ..., m_j)$. The m_j denotes the number of score levels for the j^{th} item, and typically the highest score level is assigned $(m_j - 1)$ score points. For the special case of the 2PPC model used here, the following constraints were used:

$$A_{ik} = \alpha_i(k-1), \tag{4}$$

and

$$C_{jk} = -\sum_{i=0}^{k-1} \gamma_{ji} \,, \tag{5}$$

where

$$\gamma_{j_0} = 0, \tag{6}$$

and α_i and γ_{ii} are the free parameters to be estimated from the data.

Each item has $(m_j - 1)$ independent γ_{ji} parameters and one α_j parameter; a total of m_j parameters are estimated for each item.

The IRT model parameters were estimated using CTB/McGraw-Hill's PARDUX software (Burket, 2002). PARDUX estimates parameters simultaneously for MC and CR items using marginal maximum likelihood procedures implemented via the expectation-maximization algorithm (Bock & Aitkin, 1981; Thissen, 1982). Simulation studies have compared PARDUX with MULTILOG (Thissen, 1991), PARSCALE (Muraki & Bock, 1991), and BIGSTEPS (Wright & Linacre, 1992). PARSCALE, MULTILOG, and BIGSTEPS are among the most widely known and used IRT programs. PARDUX was found to perform at least as well as these other programs (Fitzpatrick, 1990; Fitzpatrick, 1994; Fitzpatrick & Julian, 1996).

Assessment of Item Fit to the IRT Model

Item-Model Fit

Item fit statistics discern the appropriateness of using an item in the 3PL or 2PPC model. A procedure described by Yen (1981) was used to measure fit to the 3PL model. Students are rank-ordered on the basis of $\hat{\theta}$ values and sorted into ten cells with 10% of the sample in each cell. For each item, the number of students in cell k who answered item i, N_{ik} , and the number of students in that cell who answered item i correctly, R_{ik} , were determined. The observed proportion in cell k passing item i, O_{ik} , is R_{ik}/N_{ik} . The fit index for item i is

$$Q_{Ii} = \sum_{k=1}^{10} \frac{N_{ik} (O_{ik} - E_{ik})^2}{E_{ik} (1 - E_{ik})},$$
(7)

with

$$E_{ik} = \frac{1}{N_{ik}} \sum_{j \in \text{cell} k}^{N_{ik}} P_i(\hat{\theta}_j)$$
 (8)

A modification of this procedure was used to measure fit to the 2PPC model. For the 2PPC model, Q_{Ij} was assumed to have approximately a chi-square distribution with the following degree of freedom:

$$df = I(m_i - 1) - m_i, (9)$$

where I is the total number of cells (usually 10) and m_j is the possible number of score levels for item j.

To adjust for differences in degrees of freedom among items, \mathcal{Q}_I was transformed to $\mathcal{Z}_{\mathcal{Q}_I}$

where

$$Z_{Q_I} = (Q_1 - df)/(2df)^{1/2}. (10)$$

The value of Z will increase with sample size, all else being equal. To use this standardized statistic to flag items for potential misfit, it has been CTB/McGraw-Hill's practice to vary the critical value for Z as a function of sample size. For the OP tests, which have large calibration sample sizes, the criterion $Z_{Q_l}Crit$ used to flag items was calculated using the expression

$$Z_{\mathcal{Q}_l}Crit = \left(\frac{N}{1500}\right) * 4, \tag{11}$$

where *N* is the calibration sample size.

Items were considered to have poor fit if the value of the obtained Z_{QI} was greater than the value of Z_{QI} critical. If the obtained Z_{QI} was less than Z_{QI} critical, the items were rated as having acceptable fit.

Section 6.4 – Equating

Test Scaling and Equating

Once all item-level analyses were conducted, each Spring 2013 OCCT 3–8 form was calibrated and equated using the Stocking and Lord procedure (Stocking & Lord, 1983), a standard method of equating a new test form onto an existing scale. The Stocking and Lord procedure is based on the test characteristic curve (TCC) from the anchor items, which were selected to be representative of reference forms and Spring 2013 operational forms by statistics and content. CTB PARDUX software was applied to equating (2011). TCC plots for Mathematics, Reading, and Science are found in Figures 15–28.

Stability of Anchor Item

Stability of anchor items for equating procedure is important. The following method was applied to drop anchor items before equating:

- 1.) Items flagged using the TCC method are considered for exclusion when the correlation between the input and estimated item parameters is below 0.80 for the *a*-parameter and below 0.90 for the *b*-parameter. If the exclusion of an outlying anchor item increases the *a*-parameter correlation to above 0.80 or increases the *b*-parameter correlation to above 0.90, then the anchor is a candidate for removal.
- 2.) An anchor is a candidate for removal when the item is flagged on four of the seven statistics considered when examining the severe differences between the IRT regression curves: Item characteristic curves (ICCs) for anchor items before and after equating.
- 3.) An outlier for *a*-parameter or *b*-parameter can be a candidate based on anchor item plot, which shows the relationships of anchor item parameters before and after equating (Kolen and Brennan, 2005).
- 4.) Removal of the item may not significantly alter the content distribution of the anchor set. The distribution of items across the content standards must remain within 10% of the test blueprint for Reading and Mathematics.
- 5.) The mean difference and standard deviation ratio are also referenced.
- 6.) It is important to recognize that differential item performance in two test administrations does not necessarily indicate item flaws and may be affected by population differences, differences in teaching strategies, curriculum changes, etc. Therefore, CTB/McGraw-Hill recommended that Oklahoma SDE consider item content-related factors in addition to statistical evidence of differential item performance in two test administrations.

Items removed from the anchor set based on the flags from the evaluation procedure were still scored as part of the whole test. After an anchor item was removed from the anchor set based on the above criteria, the anchor file needed to be adjusted and a second version of the calibration and equating were produced. All outputs in the second version were to be evaluated following the same guidelines as the original calibration runs.

Section 6.5 - Writing Scoring

Writing prompts were administered in Spring 2013. Students in Grades 5 and 8 responded to one operational writing prompt. The writing score is a weighted composite of five analytic scores that focus on specific domains of writing skills. These skills are listed in Table 6.1. Each student's response to a prompt is read by two independent raters; the raters' scores for each domain are averaged. The domain scores range from 1 (the lowest score) to 4 (the highest score).

Table 6.1. Writing Analytic Traits and Scoring Weights

Writing Analytic Traits	Weight
Ideas and Development (ID)	30%
Organization, Unity, and Coherence (OUC)	25%
Word Choice (WC)	15%
Sentences and Paragraphs (SP)	15%
Grammar, Usage, and Mechanics (GUM)	15%

The composite score (CS) is calculated as a weighted composite of the average of two independent ratings for each of the five analytic traits:

$$CS = 15(0.30ID + 0.25OUC + 0.15WC + 0.15SP + 0.15GUM)$$

No IRT model was applied to the Writing prompts.

Section 7 - Results

This section provides the data analysis results for the Spring 2013 OCCT 3–8. Item level analyses for operational and field test items are presented below. Standard, test, and proficiency level student performances are summarized and presented as well. Note that there was one operational MC item suppressed in Mathematics Grade 6 as a result of the SDE review of the operational items. That item did not contribute to students' scores and is not included in the analyses results in this section.

Section 7.1 - Item Level Performance

A summary comparison of the classical item statistics between the Spring 2011, Spring 2012, and Spring 2013 OCCT 3–8 results is presented in Table 8. Typically, differences of less than about |0.05| are desirable. As can be seen in Table 8, between Spring 2012 and Spring 2013, p-values had a slight increase across grades and content areas, with the largest difference seen in Reading Grade 6 (0.03). The mean item-test correlation showed the largest change in Mathematics Grade 3 and Reading Grade 8 (0.03), but few p-values changed. The two-year difference was of 0.00% for most grades and content areas.

A summary of the range of *p*-values and item-test correlations for all operational and field test items for Spring 2013 is presented in Table 9. (Note that item-test correlations were calculated by correlating the correct response of the focal item to the remainder of the items in the test, focal item excluded.) For analysis, the Writing trait was treated as an item. As shown in Table 9, the average *p*-values for the operational test items are from the low 0.60s to mid 0.70s in Mathematics; from the low to mid 0.70s in Reading; from the mid 0.50s to upper 0.60s in Science; and in the mid 0.50s in Writing. The range of the *p*-values dips below 0.25 in Mathematics Grade 7 and Science Grade 8. Item-test correlations across most grades and content areas are within typical and acceptable ranges; except for Science Grade 5 where one item shows an item-test correlation lower than 0.15. For the field test items, the average *p*-values are in the mid 0.40s to low 0.60s for Mathematics, mid 0.50s to low 0.60s for Reading, mid 0.40s and mid 0.50s for Science, and low to mid 50s for Writing. The item-test correlations for field test items are in the upper 0.20s to low 0.30s for Mathematics and Reading, and in the low to mid 0.20s for Science.

The item omission rates for operational and field test items are presented in Table 10. The operational items for Mathematics, Reading, and Science had omission rate across grades less than 1.4% (well below the 5% criteria), indicating acceptable administration times for the number of items in each test session. The MC field test items for Mathematics, Reading, and Science show omission rates well below the 5% criteria for the MC items; for CR items in the lower Reading grades, omission rates were well above the 5% criteria. For Writing Grade 8, the omission rate reached 4.17%.

DIF results are reported for Mathematics, Reading, and Science in Table 11 for gender and Tables 12–12.3 for ethnicity. The results indicate that the majority of operational test items did not exhibit bias. For operational items on gender DIF, there were a total of 22 items (3.14%) flagged for moderate "B" DIF and 6 items (0.86%) flagged for severe "C" DIF. For operational

items in the four ethnicity groups DIF analyses, there were between 0.00% to 8.86% of items flagged for moderate "B" DIF and between 0.14% and 2.71% of items flagged for severe "C" DIF.

DIF results for the field test items in Mathematics, Reading, and Science show that for gender DIF, there were a total of 23 items (2.64%) flagged for moderate "B" DIF and 2 items (0.23%) flagged for severe "C" DIF. For field test items in the four ethnicity groups included in the DIF analyses, there were between 0.34% to 10.22% of items flagged for moderate "B" DIF, and between 0.00% and 4.94% of items flagged for severe "C" DIF.

All of the items flagged were reviewed by CTB content experts who cross-referenced all teacher judgments and comments from across the content reviews, bias and sensitivity reviews, as well as alignment workshops to make decisions with the SDE about suppressions from operational scoring and use of flagged operational and/or field test items in future test forms.

Problematic Items

Piloting or field testing items is the best way to find potentially problematic items in the item pool. However, even during an operational administration, there are times that items become unstable or do not exhibit the highest expected qualities. Therefore, the evaluation of items across administrations from the content reviews, bias and sensitivity reviews, alignment workshops, and the various statistical analyses can be exhaustive and must be sensitive to the test blueprints, which can sometimes result in the suppression of some operational items from student scores and of some field test items from the item pool. Sometimes, OE items that do not show enough/adequate case counts at a given score level, resulting in score collapses, and items that do not converge during scaling or that exhibit extreme misfit are also suppressed.

During the Spring 2013 OCCT 3–8 operational and field test administration, items were reviewed for their classical statistics, and when those statistics were outside the range of difficulty (*p*-values less than 0.25 or greater than 0.90) or showed low item-test-correlations (less than 0.15) for a specific item, the item was used or kept as a "good item" in the pool only when the content of the item justified its use (e.g., it was for a new standard or new approach that was expected to be difficult). For the Spring 2013 OCCT 3–8 operational test, there was one item in Mathematics Grade 6 suppressed before scoring began. The item was suppressed because the wrong art was in the item. Out of the 896 newly field tested items, the ones with less than desirable *p*-values and item-test correlations were reviewed by CTB/McGraw-Hill content experts and Research, and 25 were considered to have less than desirable statistics and were suppressed from the item pool.

Section 7.2 - Standards Level Performance

A review of the item difficulty across standards within each grade and content area is provided to illustrate at which standards items were more or less difficult for students. The summaries are presented in Tables 13–15. The tables provide the number of operational items, the reliability (coefficient alpha), and standard error of measurement (SEM) (formulas for which are found in **Section 8 – Summary of Reliability and Validity**), and the average difficulty or IRT location (*b*

parameter) value. The tables also provide the average *p*-values for the state and for each proficiency level for each standard.

The reliability at each standard, which is influenced by the number of items contributing to each standard, ranges from 0.51 to 0.82 in Mathematics, from 0.42 to 0.84 in Reading, and from 0.48 to 0.68 in Science. Across all content areas, the standard errors are no greater than 1.98, and the maximum amount of IRT information is 0.15. IRT locations should be reviewed within each grade by standard, as should the *p*-values.

IRT locations and *p*-values can also be reviewed within each grade by standard in Tables 13–15 as well. The IRT scale locations provide an indication as to the average *b*-parameters or location values of a set of items contributing to each of the standards. The distinction from average *p*-values is that the IRT locations provide information about where the items are found along the scale score continuum, such that higher values indicate a lower probability of students with low estimated ability of answering those items correctly. The *p*-values provide only the proportion of students in each group answering the items correctly, averaged across items within each of the standards.

Section 7.3 - Test Level Performance

Total Group Scale Scores

The OCCT 3–8 applies a number-correct scoring method based on the 3PL IRT model, which is used to estimate scale scores corresponding to each raw score. In this method, all students who have the same raw score get the same scale score regardless of which items are correct.

Tables 16 and 17 provide the state-level distribution of the scale scores across grades and content areas for Spring 2012 and Spring 2013, respectively. Table 17 provides the state-level distribution of the scale scores across grades and content areas as well as the distribution across the 25th, 50th, and 75th percentiles for Spring 2013. (Spring 2013 scale score reliability as coefficient alpha and standard error of measurement are also provided and further explained in **Section 8 – Summary of Reliability and Validity**.) As a reference only, Table 16 also shows those results for Spring 2012. Histograms and associated skewness and kurtosis of the data for Spring 2013 Mathematics, Reading, and Science are provided in Figures 1–14. The data are close to normally distributed with a very minimal positive skew in most content areas and grades.

Subgroup Scale Scores and Mean Differences

Subgroup-level scale score performance data (scale score means and standard deviations, minimum and maximum scale scores, reliability and standard error of measurement) are provided along with state-level data in Tables 18–20. Mean differences were subjected to independent sample *t*-tests for accommodated students, ELL, gender, IEP, Section 504, and Low SES subgroups, in each content area. One way Analysis of Variance (ANOVA) tests were conducted across ethnicities, for which equal variances were not assumed and the level of significance was set at 0.05. Results of the *t*-tests and ANOVAs are found in Tables 21–38 and Tables 39–41, respectively.

As presented in Tables 21–38, results of the *t*-tests show that males outperform females in most grades in Mathematics, with the exception of Grade 8, and in Science Grades 5 and 8, while females outperform males in all grades in Reading. Mean differences are not statistically significant at Mathematics Grades 5 and 8 only. At the subgroup level, the results show that accommodated students tend to have the lowest performance of the "special population" subgroups. Overall results of the *t*-tests within each category indicate that accommodated, ELL, IEP, and Low SES students all score significantly lower than the rest of the population in all grades and content areas (mean differences ranging from 31 to 98 fewer scale score points), as expected. For the Section 504 group, the same is true in all grades and content areas, but the average differences compared with the rest of the state are less than 20 scale score points and not significant at Science Grade 8.

Statistically significant differences exist between the ethnicity groups in all content areas and grades as presented in the ANOVA results in Tables 39–41.

A post-hoc Dunnett's C pair-wise comparison analysis was conducted to identify potential pairs of significant differences (p = 0.05), the results of which are found in Tables 42–44. In comparing ethnicities across all grades and content areas, students identified as Asian and White (not Hispanic) tended to outperform the other ethnicities. As shown in Tables 42–44, Asian outperformed all other ethnicities in all content areas and grades. White (not Hispanic) outperformed all other ethnicities, except Asian, in all content areas and grades. Most pairs were significantly different, with the following exceptions which were **not** significant: American Indian/Alaskan Native is not significantly different from Multiracial in Mathematics Grades 3, 4, 6, 7 and 8 and Reading Grades 7 and 8.

Section 7.4 - Proficiency Level Performance

Table 45 shows the scale score means and standard deviations for the state and for students in each proficiency level. Tables 46 and 47 provide the statewide distribution (or "impact data") of students within each proficiency level (*Unsatisfactory, Limited Knowledge, Proficient, and Advanced*) and the overall pass rates defined as the total percentage of students in both the *Proficient and Advanced* proficiency levels for Spring 2012 and 2013, respectively. Table 46 provides Spring 2012 data as a reference. Please note that Tables 45 and 47 do not include the number of students considered *Undetermined* (invalid) in the denominator of calculation.

Impact data across proficiency levels are also provided for each gender, ethnicity, and special population subgroups in Tables 48–50, where comparative performance across subgroups mimics what was provided for the scale score descriptions.

Section 8 - Summary of Reliability and Validity

This section summarizes some of the evidence in the earlier sections and provides additional evidence to support the degree to which the OCCT 3–8 tests are reliable and valid. For the OCCT 3–8, several measures of reliability are available. First, the tests are administered in standard fashion to all students. When students needed accommodations, such accommodations were provided with specific guidance from the *OSTP 2012–2013 Test Preparation Manual* (http://ok.gov/sde/sites/ok.gov.sde/files/documents/files/2705543-W_tpm_w13OK.pdf) under General Guidance, which describes details about the tests as well as specific administration policies, procedures, and accommodation guidelines.

Section 8.1 - Item Level Reliability

Item-specific reliability statistics include inter-rater reliability, item-test correlations, and differential item functioning (DIF) or item bias. The inter-rater reliabilities of OE items rely heavily on the solid and consistent training of the hand scorers, as was described in **Section 4** – **Scoring**. Tables 4.1 and 4.2, for Grade 5 and Grade 8, respectively, provide the relevant interrater reliability statistics, which are presented in terms of the percentage of perfect and adjacent agreement and checkset average agreement.

The point biserial, or item-test correlation, a type of internal consistency measure, is one measure of the correlation between each item and the overall test as described in **Section 6** – **Methods**, results of which were described in **Section 7** – **Results**. The item-test correlations for each content area, grade, and item type are shown in Table 56. The operational item-test average correlations range from 0.39 to 0.44 (Mathematics); from 0.39 to 0.42 (Reading); and 0.37 and 0.36 (Science). One operational item in Spring 2013 OCCT 3–8 Science Grade 5 presented an item-test correlation less than 0.15. That item was investigated by Content Development and found to be correctly scored. Any operational items with extremely low point biserial that may remain in the OCCT 3–8 item pool will be avoided in future operational forms.

DIF statistics (described in **Section 6 – Methods** and **Section 7 – Results**) provide a measure of the systematic errors by subgroups that are specifically attributed to some bias or systematic over- or under-representation of subgroup performance when compared to the total group performance. As discussed in **Section 7 – Results** and is apparent in Tables 11–12.3 (last rows), the percentage of operational and field test items that exhibited DIF at the moderate and severe levels was 3.37% for gender and between 0.25% and 13.56% for the four ethnicity groups.

Section 8.2 - Test Level Reliability

Total test reliability statistics (alpha and CSEMs) measure the level of consistency (reliability) of performance over all test questions in a given form, the results of which imply how well the questions measure the content domain and could continue to do so over repeated administrations. Total test reliability coefficients (in this case measured by Cronbach's alpha [α ; 1951]) may range from 0.00 to 1.00, where 1.00 refers to a perfectly reliable test. The OCCT 3–8 reliability data are based on Oklahoma-specific representative samples from each grade (the scaling sample), and the results for 2013 are typical of the results obtained for all previous OCCT 3–8

operational tests. The total test reliabilities of the operational forms were evaluated first by Cronbach's α (1951) index of internal consistency. The specific calculation for Cronbach's α is

$$\hat{\alpha} = \frac{k}{k-1} \left(1 - \frac{\sum \hat{\sigma}_i^2}{\hat{\sigma}_X^2} \right),\tag{12}$$

where k is the number of items on the test form, $\hat{\sigma}_i^2$ is the variance of item i, and $\hat{\sigma}_X^2$ is the total test variance and the summation is over all the items (i = 1, ..., k) on the test. Achievement tests are typically considered of sound reliability when their reliability coefficients are in the range of 0.80 and above.

Table 57 shows the reliability coefficients for each scored operational test form for each content area and grade for both Spring 2012 and Spring 2013. Alpha reliability coefficients for Spring 2012 and Spring 2013 are quite similar. Reliability for Spring 2013 ranged between 0.85 (Science Grade 8) and 0.91 (Mathematics Grade 3). Such a range is indicative of the high reliability of Spring 2013 OCCT 3–8 operational tests. As is evident in Tables 18–20, for Spring 2013 state and subgroup data, the coefficients are quite high and similar to the state, even at the subgroup levels. The mean (and range) of the state-level reliability coefficients for each content area are as follows: Mathematics 0.90 (range 0.89–0.91), Reading 0.89 (range 0.88–0.90), Science 0.86 (range 0.85–0.86). At the subgroup level, the lowest reliability (0.76) was found for the ELL students in Science Grade 8.

The SEM is another measure of reliability and is a direct estimate of the degree of measurement error in students' total scores (per the alpha reliability coefficient). The SEM represents the number of score points about which a given score can vary, similar to the standard deviation of a score; the smaller the SEM, the smaller the variability of the estimate, and the higher the reliability. The total SEMs are computed with the following formula:

$$SEM = SD_{TT}(\sqrt{1-\hat{\alpha}}), \qquad (13)$$

where SD_TT is the standard deviation for the total test, and $\hat{\alpha}$ is the result of the calculation of Cronbach's α in Equating 12.

The CSEMs conditional on each scale score are computed with the following formula:

$$CSEM = SD SS(\sqrt{1-\hat{\alpha}}), \qquad (14)$$

SD_SS is the standard deviation of the scale score. The total test SEMs for each test form are provided for each content area and grade at the state and subgroup levels in Tables 18–20. Scale score specific SEMs are given in Tables 58–60, which also provide the raw scores associated with each scale score.

Section 8.3 - Test Level Validity

Exploratory Factor Analysis (EFA) and Confirmatory Factor Analyses (CFA) were conducted to evaluate the unidimensionality assumption of the OCCT 3–8 test scores for the total population and then various subgroups such as accommodated, ELL, Section 504, Low SES, and IEP. In factor analyses, the "construct" is referred to as a factor. If the data are essentially unidimensional, a single factor should account for most of the variation in the data.

Accordingly, a unidimensional factor model was tested using polychoric correlation coefficients against the obtained covariance matrix using maximum likelihood estimation (Bentler & Bonett, 1980, Jöreskog & Sorbom, 1989) for each content area and grade for the total population and each subgroup using SAS version 9.1. The polychoric correlation is most appropriate when variables are dichotomous or ordinal and together are assumed to reflect a single, underlying construct (Byrne, 1998).

First, the factorability of the correlation matrix was examined before conducting the CFA (Is the data adequately correlated and thus analyzable or "factorable" to move forward?). The Kaiser-Meyer Olkin (KMO; Kaiser, 1970, 1974) measure of sampling adequacy was used through an EFA procedure to evaluate the strength of the linear relationship among the items within each correlation matrix. KMO values in the 0.90 and greater range are considered "marvelous" according to Kaiser's (1974) criteria. As shown in Tables 61–64, KMO values for the total group ranged from 0.96 to 0.97, and for each subgroup from 0.87 to 0.96 (Accommodated), from 0.85 to 0.96 (ELL), from 0.95 to 0.97 (Free Lunch), and from 0.92 to 0.97 (IEP). That most of the KMO values are in the "marvelous" range suggests that the matrix is appropriate for CFA for each analysis.

As a rough estimate of the number of factors (dimensions or constructs) that might be present in the data, the Kaiser criterion of computing the eigenvalues for the correlation matrix was examined next. Eigenvalues represent how much variability is accounted for by each factor not in sum but out of the total amount of variance, which means there will be times the percentages can be greater than 100%. Tables 61–64 also show the total amount of variance that exists in each form, as well as the percent of variance accounted for by the initial eigenvalue. For the total group analyses, the first eigenvalue's measure of the amount of variance in relation to the total variance is 86–97% (Mathematics), 91–103% (Reading), and 104–106% (Science). The range of variance by the first eigenvalue in each content area and subgroup is as follows:

- Accommodated: 81–88% (Mathematics), 88–93% (Reading), 98% and 91% (Science).
- ELL: 79–87% (Mathematics), 84–93% (Reading), 91% and 85% (Science).
- Free Lunch: 85–96% (Mathematics), 91–102% (Reading), 104% and 106% (Science).
- IEP: 85–92% (Mathematics), 92–95% (Reading), 100% and 97% (Science).

Such values indicate one major factor is present in each of the content assessments. It is interesting to note that the range of variance for Science is mostly higher than the other two content areas for the total population and each subgroup.

As a rule, "essential unidimensionality" is assumed when the ratio of the first eigenvalue to the second eigenvalue is at least three. The final column of Tables 61–64 provides the ratio of the first and second eigenvalues. All grades and content areas for the total population and each subgroup have no ratios less than six; therefore, the OCCT 3–8 tests are demonstrating essential unidimensionality per the eigenvalue ratio criterion.

An additional available criterion used in EFA to judge the number of factors present is the scree test (Cattell, 1966) of eigenvalues plotted against factors. Examinations of the scree plots (Figures 29–98) for all grades and content areas for the total population and each subgroup indicate a single factor model is present and similar patterns between the total population and subgroups.

Summary inspection across all the criteria—variance, ratio of eigenvalues, and scree plots—seems to indicate that the tests for each content area and grade, and for each subgroup, are essentially unidimensional. It is important to review the relationships of factors in conjunction with all other data, particularly where items may be dependent (for example, where all openended items are scored twice).

Section 8.4 - Performance Level Reliability

Proficiency Level Reliability

One of the cornerstones of the federal Elementary and Secondary Education Act (ESEA) emphasizes the need for all students to score in the "Proficient" category on English Language Arts, Mathematics and Science. Because of a heavy emphasis on moving all students to or above the "Proficient" category, the consistency and accuracy of the classification of students into these proficiency categories is of particular interest. The statistical quality of cut scores that define the proficiency levels in which students are classified based on their performance serves as additional validity evidence. Details about the Science standard setting workshop and the Bookmark Standard Setting Procedure used to set the cut scores are given in the Oklahoma School Testing Program Standard Setting Technical Report for OCCT Grades 5 and 8 Science and Writing (CTB/McGraw-Hill, 2013). It may be useful to note that the Bookmark Procedure (Mitzel, Lewis, Patz, & Green, 2001) is a well-documented and highly regarded procedure that has been demonstrated by independent research to produce reasonable cut scores on tests across the country.

It is also important to review the specific scale score SEM for each cut score. Table 65 shows the Spring 2013 SEMs estimated for each of the cut scores for each content area and grade. Comparison of these SEMs to the SEMs associated with other OCCT 3–8 scale scores for each test (shown in Tables 58–60) reveals that these values are almost always among the lowest, meaning that the OCCT 3–8 tests tend to measure most accurately near the cut score. This is a desirable quality when cut scores are used to classify examinees. (Not every scale score possible, sometimes including the cut score, is shown in Tables 58–60; there are more scale scores possible at each raw score than can be shown in these tables.)

Not only is it important that the amount of measurement error around the cut score is minimal, but also important is the expected consistency with which students would be classified into performance levels if given the test over repeated occasions.

Classification consistency is defined as the extent to which two classifications of a single student agree from two independent administrations of the same test (or two parallel forms of the test). Classification consistency and accuracy are additional measures of test reliability as well as validity. Reliability coefficients, such as Cronbach's alpha, are used to check for the internal consistency within a single test. Test-retest reliability requires two administrations of the same test, which requires another test as an external reference. Consistency in the classification sense represents how well two forms of an assessment with equal difficulty agree (Livingston & Lewis, 1995). It is estimated using actual response data and total test reliability from an administered form of an assessment, from which two parallel forms of the assessment are statistically modeled and classifications compared.

Classification accuracy is defined as the agreement between the actual classifications using observed cut scores and true classifications based on known true cut scores (Livingston & Lewis, 1995). It is common to estimate classification accuracy by utilizing a psychometric model to find true scores corresponding to observed scores.

In other words, classification consistency refers to the agreement between two observed classification results, while classification accuracy refers to the agreement between the observed classification outcome and the true classification result. A straightforward approach to classification consistency estimation can be expressed in terms of a contingency table representing the probability of a particular classification outcome under specific scenarios. For example, the following is a contingency table of $(H+1) \times (H+1)$, where H is the number of cut scores such that two cut scores yield a 3x3 contingency table as follows.

	Level 1	Level 2	Level 3	Sum
Level 1	P ₁₁	P ₂₁	P ₃₁	P. ₁
Level 2	P_{12}	P_{22}	P_{32}	P. ₂
Level 3	P_{13}	P_{23}	P ₃₃	P. ₃
Sum	\overline{P}_1 .	P ₂ .	P ₃ .	1.0

To report classification consistency, Swaminathan, Hambleton, and Algina (1974) suggest using Cohen's kappa (1960):

$$kappa = \frac{P - P_c}{1 - P_c}, \tag{15}$$

where P is defined as the sum of diagonal values of the contingency table (shaded above) and P_c is the chance probability of a consistent classification under two completely random assignments. This probability, P_c , is the sum of the probabilities obtained by multiplying the

marginal probability of the first administration and the corresponding marginal probability of the second administration:

$$P_c = (P_{1. \times} P_{.1}) + (P_{2. \times} P_{.2}) + (P_{3. \times} P_{.3}). \tag{16}$$

The Livingston and Lewis (1995) method based on the binomial error model and the four-parameter beta true score distribution was applied to OCCT 3–8. Tables 66 and 67 show the classification consistency and classification accuracy indices. Note that the values of all indices depend on several factors, such as the reliability of the actual test form, the distribution of scores, the number of cut scores, and the location of each cut score. The probability of a correct classification (Consistency) is the probability that the classification the student received is consistent with the classification that the student would have received on a parallel form; in other words, that the classification is correct. This is akin to the exact agreement rate in inter-rater reliability, and the expectation is that this probability would be high.

Table 66 shows the average consistency is 0.69 across all grades and content areas, and ranges from 0.6 (Science Grades 5 & 8) to 0.78 (Reading Grade 3). The average accuracy is 0.77 across all grades and content areas, and ranges from 0.70 (Science Grades 5 and 8) to 0.84 (Reading Grade 3). Cohen's kappa (Kappa) provides the same type of reliability or agreement statistic as in the inter-rater reliabilities. In this context, it represents the agreement of the classifications between the two parallel forms with consideration of the probability of a correct classification by chance (Consistency–Chance¹)/(1–Chance). In general, the value of Kappa is lower than the value of Consistency because the probability of a correct classification by chance is greater than 0. This is true of the OCCT 3–8 data in Table 66. The average Kappa is 0.54 over all grades and content areas and ranges from 0.46 (Science Grade 8) to 0.59 (Mathematics Grade 3).

Consistency and accuracy are important to consider together. The probability of accuracy (Accuracy) represents the agreement between the observed classification, based on the actual test form, and the true classification given the modeled form. Table 67 shows consistency and accuracy at the cut score level. The average consistency across grades and cut score level is 0.89, ranging from 0.82 (Science Grade 8, at the Proficient and Advanced proficiency levels) to 0.97 (Reading Grade 3, at the Advanced proficiency level). The average accuracy across grades and cut score level is 0.92, ranging from 0.87 (Science Grade 8, at the Proficient and Advanced proficiency levels) to 0.98 (Reading Grade 3, at the Advanced proficiency level). Finally, Table 68 provides the probability of false positives (FP) and false negatives (FN) as measures of error in the data table, and these are low (no greater than 0.06), as expected.

Copyright © 2013 by Oklahoma State Department of Education.

¹ The probability of a correct classification by chance (Chance) is the probability that the classification is correct and is due to chance alone. The probability of Chance is estimated under a complete random assignment procedure using the marginal distribution of each form. The Chance probabilities are expected to be low.

Section 9 - Online Disruption in Spring 2013 Administration

Background

Online testing was administered to all Oklahoma OCCT Grades 6–8 Reading and Mathematics tests in the Spring 2013 administration. While the online testing window started in mid-April and was progressing well, on Monday, April 29th and Tuesday, April 30th, students taking online assessments in the state experienced system interruptions, which led some local districts to temporarily suspend testing on those days. CTB's diagnostic efforts revealed that two separate issues with CTB/McGraw-Hill's Online Assessment System (OAS) caused the interruptions.

CTB/McGraw-Hill utilizes industry standard tools and current state software engineering practices for building and evaluating our systems. In preparation for the 2013 testing season, additional capacity was added and extensive load testing was performed. However, the factors that triggered the system interruptions on April 29th and 30th had not been detected in testing or prior year production use.

The key difference between what was seen in actual use versus CTB's performance evaluation was high utilization sustained over a longer period of time, which consumed more physical memory in the first outage and subsequently more virtual memory in the second. This memory utilization was more than the load tests predicted.

CTB engineers worked quickly to address both issues. In the first event, CTB restarted systems and added physical memory. In the second event, CTB identified necessary memory configuration changes and implemented them as rapidly as possible to allow the testing to continue. Changes included increased physical memory on nodes hosting applications, increased virtual memory Heap size on each node, and finally after analyzing utilization, adding more nodes on the following weekend. Once all these upgrades were completed, the OAS application was able to manage the volume of requests without degraded performance.

On April 30th, while CTB engineers were trying to restore the system health back to normal, one activity was to "cut over" to the disaster recovery site. While the system remained accessible, this "cut over" caused interruptions for almost all students who were active in the system. Also, as the system was moved from the working servers to the disaster recovery servers, some student responses were not immediately accessible to students when they logged back into that test session. All of the students' responses had been saved, but they were not immediately available due to the time it takes for the disaster recovery systems to be synchronized with live testing data from the primary servers. Based on the severity of the interruption and a recommendation, the State Superintendent requested that students complete their current test and then schools suspend online testing. For OCCT Grades 6–8 testing, some students, who were testing operational forms switched to an equivalent form. On May 1st, online testing returned to normal, and students did not experience further interruptions.

Section 9.1 - Interruption Study

The SDE requested an independent third-party study to investigate the impact of the disruptions on the test scores, and HumRRO was selected by the SDE to perform the study. Technical Advisory Committee (TAC) consists of researchers and assessment experts selected by the SDE. TAC members participated in a conference call with HumRRO researchers to recommend a design for the disruption study.

HumRRO applied several different methods using propensity matching between disrupted students, non-disrupted students and linear regression. Their study indicated that in general, students appeared to do as well on the test regardless of disruptions in testing (For detailed description, see "A Statistical Investigation of Oklahoma Computer Disruptions" in Appendix B).

Section 9.2 - Actions for Disrupted Students

There were two types of disruption issues: 1) There were students whose performance was considered to be impacted and 2) There were students whose immediate scores (displayed on the online test delivery client when the test is finished) and two-week scores were different.

For the first issue, the SDE decided on retaining all scores of impacted students who scored Proficient or Advanced. Though students as a whole did not experience depressions in scores, the SDE wanted no lasting effect on student performance. Also, the SDE decided to not report scores for impacted students who scored Limited Knowledge or Unsatisfactory. Though the HumRRO study suggested no systematic impact of the disruption on test scores, in the event a particular student was impacted, not reporting the scores would ensure that the individual student was not wrongly scored. The SDE selected this approach for the benefit of the students and schools.

For the second issue, about 1,400 students received an immediate raw score that differed from the score they received on the two-week preliminary reports. Several factors contributed to this issue, one of which was caused by local sites downloading the wrong test system, and the other where it appears that during a short time-span on the second day of the interruptions (4/30), some of the student responses were not saved for inclusion in the two-week reports. Students received the higher of the two scores, the immediate and the two-week report scores. Students with higher immediate raw scores received a letter from CTB indicating their proficiency level. They were included in the report card, but not in the school or district summary report. Students with a higher two-week score received a traditional score report that included performance level and performance by content standard.

References

- American Educational Research Association (AERA), American Psychological Association (APA), & the National Council on Measurement in Education (NCME) (1999). Standards for educational and psychological testing. Washington, DC: AERA.
- Barton, K. (2007). Validity and accommodations: The journey toward accessible assessments. In C. Cahalan Laitusis & L. Cook (Eds). *Large-scale assessment and accommodations: What works?* Council for Exceptional Children.
- Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. *Psychological Bulletin*, 88, 588–606.
- Bock, R.D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. *Psychometrika* 37:29–51.
- Bock, R.D. and M. Aitkin. (1981). Marginal maximum likelihood estimation of item parameters: An application of an EM algorithm. *Psychometrika* 46:443–459.
- Burket, G.R. (2002). *PARDUX* [Computer program].
- Byrne, B. M. (1998). Structural equation modeling with LISRELA, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Mahwah, NJ: Lawrence Erlbaum.
- Cattell, R. B. (1966). The scree test for the number of factors. *Multivariate Behavioral Research*, 1, 245–276.
- Cronbach, L.J. (1951). Coefficient alpha and the internal structure of tests. *Psychometrika* 16:297–334.
- CTB/McGraw-Hill. (2011). PARDUX Software version 1.66. Monterey, CA.
- CTB/McGraw-Hill. (2013). *Oklahoma School Testing Program:* 2013–2014 Test Preparation *Manual.* Monterey, CA: CTB/McGraw-Hill LLC.
- CTB/McGraw-Hill. (2013). Oklahoma School Testing Program: Standard setting technical report for OCCT Grades 5 and 8 Science and Writing. Monterey, CA: Author.
- Dorans, N. J., & Holland, P. W. (1993). DIF detection and description: Mantel-Haenszel and standardization. In P. W. Holland & H. Wainer (Eds.), *Differential Item Functioning* (pp. 35-66). Hillsdale, NJ: Lawrence Erlbaum.
- Fitzpatrick, A.R. (1990). Status report on the results of preliminary analysis of dichotomous and multi-level items using the PARMATE program.

- Fitzpatrick, A.R. (1994). Two studies comparing parameter estimates produced by PARDUX and BIGSTEPS.
- Fitzpatrick, A.R. & M.W. Julian (1996). Two studies comparing the parameter estimates produced by PARDUX and PARSCLE. Monterey, CA: CTB/McGraw-Hill.
- Holland, P. W., & Thayer, D.T. (1988). Differential Item Performance and the Mantel-Haenszel Procedure. (ETS RR-86-31). Princeton, NJ: Educational Testing Service.
- Jöreskog, K., & Sorbom, D. (1989). *LISREL 7 User's Reference Guide*, Chicago: Scientific Software International.
- Kaiser, H. F. (1970). A second generation little jiffy. *Psychometrika*, 35(4), 401–415.
- Kaiser, H. F. (1974). An index of factorial simplicity. *Psychometrika*, 39(1), 31–36.
- Kolen, M. J., & Brennan, R. L. (2004). *Test equating, scaling, and linking: methods and practices* (2nd ed.). New York: Springer.
- Livingston, S. A., & Lewis, C. (1995). Estimating the consistency and accuracy of classifications based on test scores. *Journal of Educational Measurement*, *32*, 179–197.
- Lord, F. M. (1980). *Applications of item response theory to practical testing problems*. Hillsdale, NJ: Lawrence Erlbaum.
- Lord, F. M., & Novick, M. R. (1968). *Statistical theories of mental test scores*. Reading Massachusetts: Addison-Wesley Publishing Company.
- Lord, F. M., & Wingersky, M. S. (1984). Comparison of IRT true-score and equipercentile observed-score "equatings." *Applied Psychological Measurement*, 8, 453-461.
- Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute, 22, 719–748.
- Michaelides, M. P. (2008). An Illustration of a Mantel-Haenszel Procedure to Flag Misbehaving Common Items in Test Equating. *Practical Assessment Research & Evaluation*, 13(7). Available online: http://pareonline.net/pdf/v13n7.pdf.
- Mitzel, H. C., Lewis, D. M., Patz, R. J., & Green, D. R. (2001). The Bookmark procedure: Psychological perspectives. In G. J. Cizek (Ed.), *Setting performance standards: Concepts, methods, and perspectives* (pp. 249–281). Mahwah, NJ: Lawrence Erlbaum.
- Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. *Applied Psychological Measurement* 16:159–176.

- Muraki, E. (1997). The generalized partial credit model. In W.J. van der Linden & R.K. Hambleton (Eds.), *Handbook of Modern Item Response Theory* (pp. 153–164). New York: Springer Verlag.
- Muraki, E. & R.D. Bock (1991). *PARSCALE: Parameter Scaling of Rating Data* [Computer program]. Chicago, IL: Scientific Software, Inc.
- Oklahoma State Department of Education. (2013). *Test Support (Teachers and Administrators)*. Available online: http://www.ok.gov/sde/test-support-teachers-and-administrators.
- Pearson. (2011). Oklahoma School Testing Program: Oklahoma Core Curriculum Tests Grades 3 to 8 Assessments 2011 Technical Report. Pearson.
- Pearson. (2012). Oklahoma School Testing Program: Oklahoma Core Curriculum Tests Grades 3 to 8 Assessments 2012 Technical Report. Pearson.
- Stocking, M. L., & Lord, F. M. (1983). Developing a common metric in item response theory. *Applied Psychological Measurement*, 7, 201–210.
- Swaminathan, H., Hambleton, R. K., & Algina, J. (1974). Reliability of criterion-referenced tests: A decision-theoretic formulation. *Journal of Educational Measurement*, 11(4), 263–267.
- Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. *Psychometrika* 47:175–186.
- Thissen, D. (1991). MULTILOG: Multiple category item analysis and test scoring using item response theory [Computer software]. Chicago, IL: Scientific Software International, Inc.
- Thissen, D., Chen, W-H., & Bock, R. D. (2003). *MUTILOG; Multiple-category item analysis and test scoring using item response theory (Version 7)* [Computer software]. Lincolnwood, IL: Scientific Software International.
- Thissen, D., Pommerich, M., Billeaud, K., & Williams, V. S. L. (1995). Item response theory for scores on tests including polytomous items with ordered responses. *Applied Psychological Measurement*, 19, 39–49.
- United States Department of Education. (2002). *No Child Left Behind Act of 2001*. (U.S. Department of Education, Office of Elementary and Secondary Education). Washington, DC.
- United States Department of Education. (2004). Standards and assessment peer review guidance: Information and examples for meeting requirements for the No Child Left Behind Act of 2001. (U.S. Department of Education, Office of Elementary and Secondary Education). Washington, DC.

- Wright, B.D. & J. M. Linacre. (1992). *BIGSTEPS Rasch Analysis* [Computer program]. Chicago, IL: MESA Press.
- Yen, W. M. (1981). Using simulation results to choose a latent trait model. *Applied Psychological Measurement*, *5*, 245–262.
- Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. *Applied Psychological Measurement*, 8, 125–145.
- Yen, W.M. (1993). Scaling performance assessments: Strategies for managing local item dependence. *Journal of Educational Measurement* 30:187–213.
- Zieky, M. (1993). Practical questions in the use of DIF statistics in test development. In P. W. Holland & H. Wainer (Eds.), *Differential item functioning* (pp. 337–347). Hillsdale, NJ: Lawrence Erlbaum.

Tables

Table 7. Subgroup Representativeness of Scaling Sample Compared to Total Population, Spring 2013

			Female			Male	
Content	Grade	Sample	State	Diff.	Sample	State	Diff.
	3	50.26	49.44	0.81	49.74	50.56	-0.81
	4	49.53	49.79	-0.26	50.47	50.21	0.26
Mathematics	5	49.73	49.94	-0.21	50.27	50.06	0.21
Mamemanes	6	50.05	49.58	0.47	49.95	50.42	-0.47
	7	50.28	49.83	0.45	49.72	50.17	-0.45
	8	50.47	50.17	0.30	49.53	49.83	-0.30
	3	50.70	49.70	1.00	49.30	50.30	-1.00
	4	50.09	50.15	-0.06	49.91	49.85	0.06
Daadina	5	50.27	50.22	0.05	49.73	49.78	-0.05
Reading	6	50.27	49.89	0.38	49.73	50.11	-0.38
	7	50.38	49.99	0.39	49.62	50.01	-0.39
	8	50.48	50.17	0.31	49.52	49.83	-0.31
Caianaa	5	50.04	49.95	0.09	49.96	50.05	-0.09
Science	8	50.04	49.80	0.24	49.96	50.20	-0.24

Table 7. Subgroup Representativeness of Scaling Sample Compared to Total Population, Spring 2013 (continued)

		Afri	ican Ame	rican	American			
		(N	ot Hispar	nic)	Inc	dian/Alasl	kan	
Content	Grade	Sample	State	Diff.	Sample	State	Diff.	
	3	7.82	8.91	-1.09	18.73	14.97	3.76	
	4	8.44	8.94	-0.49	18.35	15.21	3.14	
Mathematics	5	8.17	9.10	-0.93	20.90	15.97	4.93	
Maniemanes	6	8.63	8.69	-0.06	16.28	16.11	0.17	
	7	8.99	8.96	0.03	16.55	16.45	0.10	
	8	8.85	8.88	-0.03	16.42	16.31	0.11	
	3	7.92	8.89	-0.97	18.94	14.99	3.95	
	4	8.71	8.94	-0.22	18.14	15.18	2.96	
Daadina	5	7.78	9.09	-1.31	21.07	15.97	5.10	
Reading	6	8.68	8.74	-0.06	16.42	16.26	0.15	
	7	9.13	9.12	0.00	16.54	16.46	0.08	
	8	9.04	9.05	-0.01	16.46	16.40	0.07	
Saianaa	5	9.90	9.22	0.68	16.01	15.97	0.04	
Science	8	10.06	9.33	0.73	16.67	16.37	0.30	

Table 7. Subgroup Representativeness of Scaling Sample Compared to Total Population, Spring 2013 (continued)

			Hispanic			Asian	
Content	Grade	Sample	State	Diff.	Sample	State	Diff.
	3	13.55	15.81	-2.26	1.73	2.05	-0.32
	4	14.52	15.16	-0.65	1.49	1.87	-0.38
Mathematics	5	13.29	14.61	-1.32	1.32	1.93	-0.61
Mathematics	6	12.23	13.88	-1.65	2.1	2.02	0.08
	7	12.03	13.2	-1.17	1.94	1.88	0.06
	8	11.5	12.68	-1.18	2.02	1.98	0.04
	3	13.49	15.71	-2.22	1.63	2.02	-0.4
	4	14.12	15.09	-0.96	1.44	1.86	-0.42
D 1'	5	12.88	14.49	-1.61	1.36	1.92	-0.55
Reading	6	12.22	13.69	-1.47	2.05	1.96	0.08
	7	12.02	13.07	-1.05	1.94	1.88	0.06
	8	11.42	12.58	-1.16	1.95	1.91	0.04
Caianaa	5	14.13	14.61	-0.48	1.93	1.92	0.01
Science	8	12.84	12.92	-0.08	1.98	1.89	0.09

Table 7. Subgroup Representativeness of Scaling Sample Compared to Total Population, Spring 2013 (continued)

		Hawaiia	an/Pacific	Islander	White	e (Not His	panic)]	Multiracia	ıl
Content	Grade	Sample	State	Diff.	Sample	State	Diff.	Sample	State	Diff.
	3	0.35	0.26	0.09	50.59	51.37	-0.78	7.23	6.63	0.60
	4	0.45	0.30	0.15	50.22	52.13	-1.91	6.53	6.39	0.14
Mathematics	5	0.27	0.26	0.01	49.57	51.81	-2.25	6.48	6.31	0.17
Mathematics	6	0.27	0.26	0.00	53.97	52.50	1.47	6.51	6.54	-0.02
	7	0.22	0.22	0.00	53.76	52.76	1.00	6.50	6.52	-0.02
	8	0.30	0.29	0.01	54.72	53.61	1.10	6.20	6.25	-0.05
	3	0.34	0.26	0.08	50.49	51.49	-1.00	7.19	6.64	0.55
	4	0.45	0.30	0.15	50.58	52.29	-1.71	6.56	6.35	0.21
D 1'	5	0.24	0.25	-0.01	49.97	51.93	-1.96	6.69	6.36	0.33
Reading	6	0.27	0.27	0.01	53.83	52.49	1.35	6.53	6.60	-0.06
	7	0.21	0.22	0.00	53.70	52.74	0.95	6.46	6.50	-0.04
	8	0.25	0.25	0.00	54.67	53.54	1.12	6.21	6.27	-0.06
Caianas	5	0.24	0.25	0.00	51.68	51.72	-0.03	6.10	6.32	-0.21
Science	8	0.31	0.29	0.02	52.61	53.37	-0.76	5.54	5.82	-0.28

Table 7. Subgroup Representativeness of Scaling Sample Compared to Total Population, Spring 2013 (continued)

			ELL			IEP			Section 50)4
Content	Grade	Sample	State	Diff.	Sample	State	Diff.	Sample	State	Diff.
	3	8.96	10.48	-1.53	11.20	11.71	-0.52	0.35	0.63	-0.28
	4	6.58	6.93	-0.35	10.76	11.63	-0.88	0.54	0.79	-0.25
Mathematics	5	5.32	5.80	-0.48	10.67	11.07	-0.40	0.53	0.84	-0.31
Mathematics	6	3.11	4.39	-1.27	7.31	9.89	-2.58	0.89	0.92	-0.03
	7	3.56	4.38	-0.82	7.17	9.16	-1.99	0.92	0.93	-0.01
	8	3.43	4.31	-0.89	5.98	7.87	-1.89	0.88	0.92	-0.04
	3	8.55	10.21	-1.66	10.30	10.70	-0.41	0.38	0.64	-0.26
	4	5.97	6.60	-0.62	9.53	10.50	-0.97	0.60	0.81	-0.21
Dandina	5	4.84	5.46	-0.62	9.22	10.19	-0.97	0.52	0.85	-0.32
Reading	6	3.04	4.06	-1.02	7.22	9.52	-2.30	0.91	0.93	-0.02
	7	3.43	4.13	-0.70	7.31	9.14	-1.83	0.93	0.95	-0.02
	8	3.22	4.03	-0.81	6.46	8.17	-1.71	0.88	0.92	-0.04
Science	5	5.55	5.79	-0.24	11.91	12.14	-0.23	0.76	0.83	-0.07
Science	8	4.35	4.59	-0.24	10.34	10.43	-0.09	0.91	0.90	0.01

Table 7. Subgroup Representativeness of Scaling Sample Compared to Total Population, Spring 2013 (continued)

			SES - Lov	N	()	SES - Hig	h	Ac	Accommodated		
Content	Grade	Sample	State	Diff.	Sample	State	Diff.	Sample	State	Diff.	
	3	36.95	38.92	-1.96	63.05	61.08	1.96	8.86	10.15	-1.29	
	4	36.51	39.60	-3.09	63.49	60.40	3.09	8.47	9.51	-1.04	
Mathematics	5	34.59	40.18	-5.59	65.41	59.82	5.59	7.67	9.16	-1.48	
Maniemancs	6	44.09	42.66	1.44	55.91	57.34	-1.44	3.60	6.71	-3.11	
	7	45.09	44.16	0.93	54.91	55.84	-0.93	3.85	6.13	-2.28	
	8	47.60	46.65	0.95	52.40	53.35	-0.95	2.77	5.00	-2.23	
	3	36.76	39.04	-2.29	63.24	60.96	2.29	7.72	7.92	-0.21	
	4	37.08	39.84	-2.77	62.92	60.16	2.77	6.97	7.56	-0.59	
Dandina	5	35.46	40.43	-4.96	64.54	59.57	4.96	6.24	7.65	-1.41	
Reading	6	43.87	42.59	1.27	56.13	57.41	-1.27	3.04	5.57	-2.53	
	7	44.93	44.02	0.91	55.07	55.98	-0.91	3.21	5.14	-1.93	
	8	47.41	46.43	0.97	52.59	53.57	-0.97	2.27	4.13	-1.86	
Caianaa	5	39.52	39.95	-0.43	60.48	60.05	0.43	9.31	9.92	-0.61	
Science	8	44.65	45.69	-1.04	55.35	54.31	1.04	6.22	6.35	-0.13	

Table 8. Summary of P-Values and Item-Test Correlations Statistics for Operational Test Forms, Spring 2011 to Spring 2013

•				Mean P-V	alues*				Correlations*
					Diff.				Diff.
Content	Grade	2011	2012	2013	S13-S12	2011	2012	2013	S13-S12
	3	0.73	0.76	0.76	0.00	0.37	0.41	0.44	0.03
	4	0.73	0.76	0.76	0.00	0.36	0.41	0.42	0.01
Mathematics	5	0.67	0.73	0.73	0.00	0.36	0.39	0.40	0.01
Maniemancs	6	0.59	0.66	0.66	0.00	0.36	0.41	0.41	0.00
	7	0.57	0.63	0.62	-0.01	0.35	0.40	0.39	-0.01
	8	0.59	0.64	0.65	0.01	0.36	0.41	0.42	0.01
	3	0.66	0.72	0.72	0.00	0.37	0.41	0.42	0.01
	4	0.67	0.74	0.72	-0.02	0.33	0.39	0.40	0.01
Daadina	5	0.71	0.76	0.77	0.01	0.35	0.40	0.42	0.02
Reading	6	0.67	0.70	0.73	0.03	0.35	0.41	0.40	-0.01
	7	0.69	0.77	0.77	0.00	0.36	0.38	0.40	0.02
	8	0.72	0.77	0.76	-0.01	0.32	0.36	0.39	0.03
Caianaa	5		•	0.68	•		•	0.37	
Science	8		•	0.57			ē	0.36	

Note: *Census Data; Suppressed items are not included in the data; Science cannot be compared across years because Science was rescaled in Spring 2013.

Table 9. Summary of Range of P-Values and Item-Test Correlations Statistics for Operational and Field Test, Spring 2013

				Mean P	-Values*			Mean Item-Test Correlations*						
		Ope	erational It	ems	Fie	eld-Test Ite	ems	Ope	Operational Items			Field-Test Items		
Content	Grade	Low	Mean	High	Low	Mean	High	Low	Mean	High	Low	Mean	High	
	3	0.38	0.76	0.93	0.09	0.62	0.96	0.25	0.44	0.60	0.03	0.31	0.57	
	4	0.51	0.76	0.93	0.22	0.59	0.96	0.26	0.42	0.57	0.06	0.32	0.51	
Mathematics	5	0.41	0.73	0.91	0.17	0.55	0.89	0.23	0.40	0.57	0.02	0.32	0.50	
Maniemanes	6	0.36	0.66	0.89	0.09	0.51	0.91	0.20	0.41	0.58	0.03	0.30	0.48	
	7	0.24	0.62	0.88	0.08	0.46	0.85	0.22	0.39	0.55	0.00	0.28	0.50	
	8	0.42	0.65	0.88	0.19	0.45	0.76	0.28	0.42	0.55	0.02	0.29	0.57	
	3	0.41	0.72	0.92	0.13	0.56	0.91	0.18	0.42	0.60	0.10	0.31	0.49	
	4	0.43	0.72	0.92	0.13	0.58	0.94	0.24	0.40	0.54	0.09	0.31	0.49	
Reading	5	0.54	0.77	0.96	0.18	0.62	0.92	0.25	0.42	0.55	0.09	0.33	0.48	
Reading	6	0.43	0.73	0.96	0.10	0.61	0.96	0.27	0.40	0.52	0.08	0.31	0.49	
	7	0.51	0.77	0.97	0.10	0.57	0.95	0.17	0.40	0.55	0.01	0.28	0.47	
	8	0.47	0.76	0.97	0.22	0.63	0.94	0.24	0.39	0.50	0.01	0.27	0.44	
Science	5	0.49	0.68	0.97	0.20	0.55	0.95	0.11	0.37	0.50	0.03	0.26	0.44	
Science	8	0.23	0.57	0.87	0.18	0.47	0.94	0.20	0.36	0.51	0.01	0.22	0.45	
Writing	5	0.51	0.55	0.59	0.39	0.53	0.62				•	•		
willing	8	0.55	0.56	0.56	0.51	0.57	0.60					•		

Table 10. Summary of Range of Omission Rates for Operational and Field Test by Item Type, Spring 2013

<u> </u>			Omission Rates* Operational Items Field-Test Items									
		Item	Ope	erational It	ems	Fie	eld-Test It	ems				
Content	Grade	Type	Low	Mean	High	Low	Mean	High				
	3	MC	0.06%	0.34%	1.36%	0.01%	0.43%	2.03%				
	4	MC	0.03%	0.12%	0.32%	0.01%	0.12%	0.27%				
Mathematics	5	MC	0.03%	0.11%	0.28%	0.03%	0.14%	0.36%				
Maniemanes	6	MC	0.01%	0.06%	0.14%	0.03%	0.57%	1.03%				
	7	MC	0.01%	0.06%	0.25%	0.06%	0.60%	0.97%				
	8	MC	0.00%	0.04%	0.07%	0.08%	0.78%	1.49%				
	3	CR				3.04%	3.86%	5.05%				
	3	MC	0.05%	0.42%	1.16%	0.03%	0.36%	0.99%				
	4	CR				8.25%	9.45%	11.29%				
	4	MC	0.06%	0.17%	0.30%	0.06%	0.28%	0.96%				
	5	CR				4.90%	6.24%	8.69%				
Reading	3	MC	0.05%	0.15%	0.25%	0.03%	0.20%	0.88%				
Reading	6	CR				0.91%	1.62%	2.69%				
	O	MC	0.02%	0.05%	0.08%	0.07%	0.50%	1.18%				
	7	CR	•	•	•	1.25%	2.32%	5.32%				
	/	MC	0.01%	0.05%	0.09%	0.10%	0.38%	0.95%				
	8	CR				0.66%	1.76%	3.43%				
	0	MC	0.00%	0.05%	0.08%	0.01%	0.31%	0.90%				
Sajanaa	5	MC	0.01%	0.10%	0.21%	0.00%	0.10%	0.29%				
Science	8	MC	0.03%	0.09%	0.14%	0.01%	0.10%	0.22%				
Writing	5	CR	3.86%	3.86%	3.86%	3.49%	3.54%	3.61%				
Writing	8	CR	3.33%	3.33%	3.33%	2.63%	3.64%	4.17%				

Table 11. Spring 2013 Summary of Operational and Field Test Items Flagged for Mantel-Haenszel Differential Item Functioning, by Item Type: Gender Male/Female

		Item	Operatio	nal Items	Field Te	est Items	Total DIF
Content	Grade	Type	В	C	В	C	Flags B+C
	3	MC	4			•	4
	4	MC	1		2		3
Mathematics	5	MC	1	1	4		6
Mainematics	6	MC		1	2	•	4
	7	MC	2		3	•	5
	8	MC	5	•	2	•	7
	3	CR	•	•	•	•	
	3	MC	•	•	•	•	
	4	CR	•	•	•	•	
	4	MC				•	
	5	CR			1		1
Danding		MC				2	2
Reading	6	CR	•	•	1	•	1
	O	MC	1	1	•	•	2
	7	CR	•	•	2	•	2
	/	MC	3	1	2	•	6
	8	CR	•		3	•	3
	0	MC	2	1	1	•	4
Caianaa	5	MC	3			•	3
Science	8	MC	•	<u> </u>	•	<u>. </u>	
Total Iter	ms Flagged	1	22	6	23	2	53
Total Items Tested		70	00	8′	71	1571	
Percentage of	Percentage of Items Flagg		3.14%	0.86%	2.64%	0.23%	3.37%

Table 12. Spring 2013 Summary of Operational and Field Test Items Flagged for Mantel-

Haenszel Differential Item Functioning, by Item Type: Ethnicity White/Asian Item **Operational Items** Field Test Items Total DIF В В C Flags B+C Content Grade Type C MC MC MC Mathematics MC MCMC CR MC CR MC CR MC Reading CR MC CR MC CR MCMCScience MCTotal Items Flagged **Total Items Tested** Percentage of Items Flagged 2.71% 10.22% 4.94% 13.56% 8.86%

Table 12.1 Spring 2013 Summary of Operational and Field Test Items Flagged for Mantel-Haenszel Differential Item Functioning, by Item Type: Ethnicity White/African American

		Item	Operational Items		Field Te	est Items	Total DIF	
Content	Grade	Type	B C B C		Flags B+C			
	3	MC		•	7	1	8	
Mathematics	4	MC	3	1	9	1	14	
	5	MC		1	7	3	11	
	6	MC	2		3	1	7	
	7	MC	•	•	3		3	
	8	MC	2	•	3	•	5	
	3	CR						
		MC	1	•	4		5	
	4	CR						
		MC		1	6		7	
	5	CR						
Reading		MC	•	•	3	2	5	
	6	CR	•	•	•	•		
		MC	1	•	2	•	3	
	7	CR	•	•	•	•		
		MC	1	•	6	1	8	
	8	CR		•				
		MC	2	1	6	1	10	
Science	5	MC	•	•	5	•	5	
	8	MC	3	•	4	·	7	
Total Items Flagged		15	5	68	10	98		
Total Items Tested			700		87	71	1571	
Percentage of Items Flagged		gged	2.14%	0.71%	7.81%	1.15%	6.24%	

Table 12.2 Spring 2013 Summary of Operational and Field Test Items Flagged for Mantel-

Haenszel Differential Item Functioning, by Item Type: Ethnicity White/Hispanic Field Test Items Item **Operational Items** Total DIF В \mathbf{C} В C Flags B+C Content Grade Type 5 2 3 MC 7 8 4 4 4 MC 5 5 MC 1 4 Mathematics 6 MC 1 7 MC 1 1 8 1 2 MC 1 CR 3 5 2 8 MC 1 CR 4 MC 1 1 2 CR 5 MC 1 1 3 5 Reading CR 6 3 MC 1 1 1 6 1 CR 1 7 MC 1 2 7 4 CR 8 MC 2 3 4 2 11 5 MC 2 2 Science MC Total Items Flagged 17 9 32 8 66

700

1.29%

2.43%

Note: Census Data; Suppressed items are not included in the data.

Total Items Tested

Percentage of Items Flagged

871

0.92%

3.67%

1571

4.20%

Table 12.3 Spring 2013 Summary of Operational and Field Test Items Flagged for Mantel-Haenszel Differential Item Functioning, by Item Type: Ethnicity White/American Indian

		Item	Operational Items		Field Test	Items	Total DIF	
Content	Grade	Type	В	C	В	C	Flags B+C	
	3	MC				•		
	4	MC				•		
Mathematics	5	MC				•	•	
	6	MC				•	1	
	7	MC				•	•	
	8	MC	•	•		•	•	
	3	CR						
		MC			1	•	1	
	4	CR		•		•		
		MC		•		•		
	5	CR		•				
D 1'		MC			2	•	2	
Reading	6	CR						
		MC				•		
	7	CR				•		
		MC						
	8	CR						
		MC						
	5	MC		<u> </u>				
Science	8	MC						
Total Items Flagged			<u> </u>	3		4		
Total Items Tested			700		871		1571	
Percentage of Items Flagged			•	0.14%	0.34%		0.25%	

Table 13. Mathematics Grades 3–5 Standards Level Summary Data, Spring 2013

			Average	Average	Objective						
Grade/		No. of	Difficulty	IRT	% Correct	Average P-value					
Obj.	Standard Reference	Items	(IRT Loc)	Information	State Mean	State	P.L. 1	P.L. 2	P.L. 3	P.L. 4	Pass
3.1	Algebraic Reasoning: Patterns and Relationships	7	675.00	0.05	77.39	0.78	0.40	0.63	0.83	0.96	0.87
3.2	Number Sense & Operation	20	678.70	0.08	75.58	0.76	0.39	0.60	0.81	0.96	0.86
3.3	Geometry	7	714.57	0.05	67.29	0.67	0.38	0.54	0.70	0.89	0.76
3.4	Measurement	9	669.56	0.14	77.57	0.78	0.37	0.61	0.84	0.97	0.88
3.5	Data Analysis	7	661.57	0.08	80.77	0.81	0.38	0.66	0.88	0.98	0.91
4.1	Algebraic Reasoning: Patterns and Relationships	7	650.86	0.05	82.69	0.83	0.48	0.71	0.88	0.97	0.90
4.2	Number Sense & Operation	18	692.56	0.08	74.97	0.75	0.37	0.56	0.80	0.96	0.85
4.3	Geometry	9	670.89	0.04	75.86	0.76	0.46	0.61	0.78	0.95	0.83
4.4	Measurement	9	687.22	0.05	75.11	0.75	0.39	0.60	0.80	0.93	0.84
4.5	Data Analysis	7	698.00	0.06	74.54	0.75	0.37	0.56	0.79	0.96	0.84
5.1	Algebraic Reasoning: Patterns and Relationships	13	701.92	0.06	71.55	0.72	0.38	0.56	0.76	0.91	0.81
5.2	Number Sense & Operation	16	698.63	0.07	74.92	0.75	0.41	0.59	0.79	0.94	0.84
5.3	Geometry	7	724.00	0.04	67.99	0.68	0.36	0.52	0.71	0.89	0.77
5.4	Measurement	7	705.00	0.06	71.04	0.71	0.39	0.55	0.74	0.93	0.80
5.5	Data Analysis	7	661.29	0.05	78.92	0.79	0.46	0.67	0.83	0.95	0.87

Note: Obj. = Objective; P.L. = Performance Level.

Table 13. Mathematics Grades 3–5 Standards Level Summary Data, Spring 2013 (continued)

Grade/		No. of		
Obj.	Standard Reference	Items	Alpha	SEM
3.1	Algebraic Reasoning: Patterns and Relationships	7	0.60	0.98
3.2	Number Sense & Operation	20	0.82	1.64
3.3	Geometry	7	0.51	1.07
3.4	Measurement	9	0.73	1.07
3.5	Data Analysis	7	0.69	0.90
4.1	Algebraic Reasoning: Patterns and Relationships	7	0.57	0.91
4.2	Number Sense & Operation	18	0.80	1.62
4.3	Geometry	9	0.63	1.11
4.4	Measurement	9	0.61	1.16
4.5	Data Analysis	7	0.63	1.02
5.1	Algebraic Reasoning: Patterns and Relationships	13	0.70	1.44
5.2	Number Sense & Operation	16	0.75	1.54
5.3	Geometry	7	0.55	1.10
5.4	Measurement	7	0.55	1.08
5.5	Data Analysis	7	0.53	0.98

Table 13.1 Mathematics Grades 6–8 Standards Level Summary Data, Spring 2013

			Average	Average	Objective						
Grade/		No. of	Difficulty	IRT	% Correct			Average	P-value		
Obj.	Standard Reference	Items	(IRT Loc)	Information	State Mean	State	P.L. 1	P.L. 2	P.L. 3	P.L. 4	Pass
6.1	Algebraic Reasoning: Patterns and Relationships	13	718.46	0.07	68.57	0.69	0.36	0.53	0.72	0.91	0.78
6.2	Number Sense & Operation	15	731.80	0.09	63.84	0.64	0.32	0.45	0.67	0.89	0.74
6.3	Geometry	7	698.86	0.05	69.04	0.69	0.45	0.57	0.71	0.89	0.76
6.4	Measurement	7	736.14	0.08	59.69	0.60	0.26	0.40	0.63	0.87	0.71
6.5	Data Analysis	7	692.00	0.07	68.25	0.68	0.37	0.52	0.72	0.91	0.78
7.1	Algebraic Reasoning: Patterns and Relationships	15	745.67	0.07	62.89	0.63	0.38	0.51	0.67	0.88	0.72
7.2	Number Sense & Operation	11	707.55	0.07	68.03	0.68	0.42	0.56	0.73	0.93	0.78
7.3	Geometry	8	736.63	0.05	60.43	0.60	0.34	0.48	0.65	0.86	0.70
7.4	Measurement	9	754.44	0.13	52.99	0.53	0.31	0.39	0.54	0.84	0.62
7.5	Data Analysis	7	725.14	0.07	67.03	0.67	0.39	0.56	0.74	0.89	0.77
8.1	Algebraic Reasoning: Patterns and Relationships	16	704.94	0.06	67.97	0.68	0.37	0.53	0.71	0.88	0.78
8.2	Number Sense & Operation	11	745.00	0.05	59.82	0.60	0.29	0.44	0.61	0.83	0.71
8.3	Geometry	9	740.67	0.06	61.93	0.62	0.32	0.46	0.63	0.86	0.73
8.4	Measurement	7	723.57	0.11	62.45	0.62	0.22	0.39	0.67	0.91	0.77
8.5	Data Analysis	7	672.29	0.06	76.68	0.77	0.41	0.66	0.82	0.93	0.87

Table 13.1 Mathematics Grades 6–8 Standards Level Summary Data, Spring 2013 (continued)

Grade/		No. of		
Obj.	Standard Reference	Items	Alpha	SEM
6.1	Algebraic Reasoning: Patterns and Relatic	13	0.72	1.49
6.2	Number Sense & Operation	15	0.76	1.62
6.3	Geometry	8	0.51	1.07
6.4	Measurement	7	0.65	1.13
6.5	Data Analysis	7	0.58	1.10
7.1	Algebraic Reasoning: Patterns and Relation	15	0.70	1.67
7.2	Number Sense & Operation	11	0.66	1.38
7.3	Geometry	8	0.60	1.20
7.4	Measurement	9	0.62	1.25
7.5	Data Analysis	7	0.55	1.12
8.1	Algebraic Reasoning: Patterns and Relatic	16	0.73	1.68
8.2	Number Sense & Operation	11	0.67	1.48
8.3	Geometry	9	0.67	1.27
8.4	Measurement	7	0.72	1.09
8.5	Data Analysis	7	0.62	0.99

Table 14. Reading Grades 3–5 Standards Level Summary Data, Spring 2013

			Average	Average	Objective						
Grade/		No. of	Difficulty	IRT	% Correct			Average	P-value		
Obj.	Standard Reference	Items	(IRT Loc)	Information	State Mean	State	P.L. 1	P.L. 2	P.L. 3	P.L. 4	Pass
3.2	Vocabulary	12	709.67	0.05	73.14	0.73	0.39	0.59	0.81	0.98	0.82
3.4	Comprehension/ Critical Literacy	26	708.04	0.07	71.66	0.72	0.36	0.56	0.80	0.97	0.81
3.5	Literature	6	710.67	0.06	71.37	0.72	0.36	0.56	0.80	0.97	0.81
3.6	Research and Information	6	723.67	0.05	66.60	0.67	0.32	0.51	0.75	0.96	0.77
4.1	Vocabulary	12	689.33	0.06	72.51	0.73	0.41	0.61	0.81	0.96	0.82
4.3	Comprehension/ Critical Literacy	23	686.91	0.06	73.30	0.73	0.41	0.63	0.81	0.95	0.83
4.4	Literature	9	700.33	0.07	71.05	0.71	0.36	0.58	0.80	0.96	0.82
4.5	Research and Information	6	704.33	0.06	69.06	0.69	0.42	0.57	0.76	0.95	0.78
5.1	Vocabulary	11	666.82	0.08	80.22	0.80	0.49	0.70	0.87	0.98	0.88
5.3	Comprehension/ Critical Literacy	22	675.73	0.10	78.92	0.79	0.42	0.67	0.87	0.98	0.89
5.4	Literature	11	706.82	0.06	71.49	0.71	0.37	0.57	0.79	0.96	0.81
5.5	Research and Information	6	676.33	0.04	76.43	0.77	0.44	0.66	0.84	0.97	0.85

Table 14. Reading Grades 3–5 Standards Level Summary Data, Spring 2013 (continued)

	C	<u> </u>		
Grade/		No. of		
Obj.	Standard Reference	Items	Alpha	SEM
3.2	Vocabulary	12	0.70	1.38
3.4	Comprehension/Critical Literacy	26	0.84	1.98
3.5	Literature	6	0.56	0.97
3.6	Research and Information	6	0.57	1.01
4.1	Vocabulary	12	0.66	1.39
4.3	Comprehension/Critical Literacy	23	0.78	1.91
4.4	Literature	9	0.65	1.20
4.5	Research and Information	6	0.42	1.01
5.1	Vocabulary	11	0.63	1.17
5.3	Comprehension/Critical Literacy	22	0.83	1.67
5.4	Literature	11	0.65	1.37
5.5	Research and Information	6	0.46	0.95

Table 14.1 Reading Grades 6–8 Standards Level Summary Data, Spring 2013

			Average	Average	Objective						
Grade/		No. of	Difficulty	IRT	% Correct	Average P-value					
Obj.	Standard Reference	Items	(IRT Loc)	Information	State Mean	State	P.L. 1	P.L. 2	P.L. 3	P.L. 4	Pass
6.1	Vocabulary	8	664.50	0.12	76.99	0.77	0.43	0.66	0.85	0.97	0.87
6.3	Comprehension/ Critical Literacy	22	699.64	0.06	70.15	0.70	0.38	0.58	0.78	0.93	0.80
6.4	Literature	12	670.58	0.06	76.75	0.77	0.46	0.68	0.84	0.95	0.86
6.5	Research and Information	8	686.88	0.06	71.40	0.71	0.41	0.61	0.78	0.93	0.80
7.1	Vocabulary	10	695.60	0.09	74.56	0.75	0.52	0.65	0.79	0.93	0.81
7.3	Comprehension/ Critical Literacy	20	675.45	0.11	78.59	0.79	0.49	0.68	0.85	0.97	0.87
7.4	Literature	12	680.67	0.15	78.38	0.78	0.49	0.70	0.85	0.96	0.86
7.5	Research and Information	8	700.63	0.10	72.84	0.73	0.40	0.60	0.80	0.95	0.82
8.1	Vocabulary	7	662.00	0.07	81.31	0.81	0.51	0.70	0.85	0.96	0.87
8.3	Comprehension/ Critical Literacy	21	684.43	0.05	76.03	0.76	0.41	0.60	0.81	0.95	0.84
8.4	Literature	14	671.29	0.05	80.22	0.80	0.46	0.67	0.85	0.96	0.87
8.5	Research and Information	8	734.63	0.03	64.25	0.64	0.34	0.49	0.67	0.87	0.71

Table 14.1 Reading Grades 6 – 8 Standards Level Summary Data, Spring 2013 (continued)

Grade/		No. of		
Obj.	Standard Reference	Items	Alpha	SEM
6.1	Vocabulary	8	0.64	1.00
6.3	Comprehension/Critical Literacy	22	0.77	1.93
6.4	Literature	12	0.65	1.32
6.5	Research and Information	8	0.53	1.13
7.1	Vocabulary	10	0.48	1.23
7.3	Comprehension/Critical Literacy	20	0.78	1.62
7.4	Literature	12	0.66	1.27
7.5	Research and Information	8	0.56	1.15
8.1	Vocabulary	7	0.49	0.93
8.3	Comprehension/Critical Literacy	21	0.78	1.75
8.4	Literature	14	0.69	1.36
8.5	Research and Information	8	0.45	1.25

Table 15. Science Grades 5 & 8 Standards Level Summary Data, Spring 2013

			Average	Average	Objective						
Grade/		No. of	Difficulty	IRT	% Correct			Average	P-value		
Obj.	Standard Reference	Items	(IRT Loc)	Information	State Mean	State	P.L. 1	P.L. 2	P.L. 3	P.L. 4	Pass
5.P1	Observe and Measure	11	724.27	0.09	68.61	0.69	0.42	0.62	0.79	0.92	0.83
5.P2	Classify	9	735.67	0.07	65.75	0.66	0.40	0.60	0.75	0.89	0.80
5.P3	Experiment	13	720.00	0.09	70.02	0.70	0.47	0.65	0.78	0.90	0.82
5.P4	Interpret and Communicate	12	713.00	0.08	68.71	0.69	0.44	0.63	0.78	0.91	0.82
5.S1	Properties of Matter and Energy	17	724.94	0.09	68.44	0.69	0.45	0.63	0.77	0.90	0.81
5.S2	Organisms and Environments	12	719.50	0.06	5.97	0.68	0.42	0.64	0.78	0.90	0.82
5.S3	Structures of the Earth and the Solar System	12	740.92	0.09	5.55	0.63	0.36	0.55	0.74	0.90	0.79
8.P1	Observe and Measure	8	738.38	0.12	56.65	0.56	0.30	0.48	0.66	0.84	0.71
8.P2	Classify	9	718.78	0.08	59.02	0.59	0.35	0.53	0.67	0.82	0.71
8.P3	Experiment	16	732.75	0.10	55.74	0.56	0.31	0.47	0.65	0.83	0.70
8.P4	Interpret and Communicate	12	730.42	0.11	58.67	0.59	0.34	0.51	0.68	0.83	0.72
8.S1	Properties and Chemical Changes in Matter	8	735.63	0.15	53.34	0.53	0.27	0.44	0.62	0.83	0.68
8.S2	Motion and Forces	8	730.75	0.11	4.69	0.55	0.29	0.45	0.66	0.85	0.71
8.S3	Diversity and Adaptations of Organisms	7	699.14	0.10	5.15	0.66	0.40	0.59	0.76	0.90	0.79
8.S4	Structures/Forces of the Earth/Solar System	11	756.64	0.07	4.77	0.51	0.30	0.44	0.59	0.75	0.63
8.S5	Earth's History	8	730.13	0.10	5.10	0.60	0.35	0.52	0.69	0.85	0.74

Table 15. Science Grades 5 & 8 Standards Level Summary Data, Spring 2013 (continued)

Grade/		No. of		
Obj.	Standard Reference	Items	Alpha	SEM
5.P1	Observe and Measure	11	0.62	1.40
5.P2	Classify	9	0.55	1.31
5.P3	Experiment	13	0.61	1.48
5.P4	Interpret and Communicate	12	0.60	1.49
5.S1	Properties of Matter and Energy	17	0.67	1.77
5.S2	Organisms and Environments	12	0.62	1.48
5.S3	Structures of the Earth and the Solar System	12	0.67	1.51
8.P1	Observe and Measure	8	0.53	1.27
8.P2	Classify	9	0.49	1.32
8.P3	Experiment	16	0.68	1.79
8.P4	Interpret and Communicate	12	0.59	1.52
8.S1	Properties and Chemical Changes in Matter	8	0.55	1.25
8.S2	Motion and Forces	8	0.56	1.27
8.S3	Diversity and Adaptations of Organisms	7	0.50	1.11
8.S4	Structures/Forces of the Earth/Solar System	11	0.48	1.52
8.S5	Earth's History	8	0.51	1.27

 Table 16. Spring 2012 Scale Score Statistics

		N					Scale S	core Pe	rcentile	_			
Content	Grade	Count	Mean	SD	LOSS	N Min.	25th	50th	75th	N Max.	HOSS	Alpha	SEM
	3	45419	741.04	88.37	400	89	689	745	789	597	990	0.90	2.61
	4	44146	745.79	87.78	400	42	694	747	804	695	990	0.90	2.66
Mathematics	5	43641	742.14	85.78	400	75	691	745	794	327	990	0.89	2.77
Maniemanes	6	43415	734.25	79.51	400	105	687	739	781	284	990	0.90	2.95
	7	42540	735.15	80.15	400	239	691	740	788	182	990	0.89	3.01
	8	42076	726.02	83.07	400	476	681	731	778	234	990	0.90	3.03
	3	44742	742.68	82.26	400	64	691	743	790	122	990	0.90	2.82
	4	43366	724.38	73.38	400	32	679	721	767	208	990	0.88	2.75
Reading	5	43073	734.25	79.60	400	78	684	738	781	349	990	0.89	2.69
Reading	6	43195	730.75	78.68	400	57	679	730	783	102	990	0.89	2.85
	7	42500	738.85	70.35	400	46	696	738	785	365	990	0.87	2.70
	8	42135	757.77	81.81	400	49	712	760	799	499	990	0.86	2.73
Science	5	44116	782.53	71.36	400	47	741	786	823	193	990	0.87	2.71
	8	43131	768.51	63.84	400	38	735	775	812	69	990	0.86	2.85

Note: Statistics re-calculated by CTB based on 2012 GRT.

Table 17. Spring 2013 Scale Score Statistics

		N					Scale S	core Per	rcentile				
Content	Grade	Count	Mean	SD	LOSS	N Min.	25th	50th	75th	N Max.	HOSS	Alpha	SEM
	3	46316	739.00	88.33	400	151	691	740	792	864	990	0.91	2.62
	4	45383	745.43	90.14	400	133	693	744	798	858	990	0.90	2.69
Mathamatica	5	44295	740.71	86.98	400	137	690	741	788	430	990	0.89	2.81
Mathematics	6	43221	737.10	78.84	400	129	687	737	787	241	990	0.90	2.94
	7	43146	732.30	80.70	400	239	688	730	782	126	990	0.89	3.02
	8	41377	732.09	83.25	400	143	685	735	786	309	990	0.90	3.00
	3	45683	741.22	86.35	400	221	690	748	799	167	990	0.90	2.81
	4	44704	729.59	77.54	400	130	683	733	771	106	990	0.89	2.85
D 1'	5	43798	735.55	84.47	400	187	683	739	788	468	990	0.90	2.64
Reading	6	42971	731.18	77.53	400	49	685	730	782	115	990	0.89	2.78
	7	43368	729.88	67.56	400	91	688	728	766	239	990	0.88	2.66
	8	42341	750.16	82.06	400	74	701	753	803	178	990	0.88	2.72
Science	5	44805	695.10	72.00	400	221	656	700	742	96	990	0.86	2.84
	8	44209	694.21	57.11	400	252	665	700	733	5	990	0.85	2.98

Note: Census Data; Suppressed items are not included in data.

Table 18. Spring 2013, Mathematics Grades 3 & 4 State and Subgroup Scale Score Descriptive Data

	No.	2013, Wathematics	Sample	Scale S		Min Scale Score	Max Scale Score	Coefficient	
Grade	of Items	Subgroup	Size	Mean	SD	Obtained	Obtained	Alpha	SEM
	50	Whole State	46316	739.00	88.33	400	990	0.91	2.62
	50	Female	22881	735.33	87.00	400	990	0.91	2.64
	50	Male	23395	742.62	89.46	400	990	0.91	2.60
	50	Asian	950	778.70	92.68	479	990	0.91	2.35
	50	African American	4126	690.63	93.23	400	990	0.92	2.88
	50	Hispanic	7322	711.96	85.05	400	990	0.91	2.79
3	50	Indian American	6934	738.06	83.19	400	990	0.90	2.63
3	50	White	23794	754.52	84.70	400	990	0.90	2.52
	50	Multiracial	3190	737.98	85.75	400	990	0.91	2.63
	50	ELL	4856	695.73	84.62	400	990	0.91	2.88
	50	IEP	5425	700.13	93.72	400	990	0.92	2.85
	50	Section 504	291	721.85	92.04	400	990	0.92	2.72
	50	Low SES	28291	719.48	85.55	400	990	0.91	2.75
	50	Accommodated	4702	676.81	85.45	400	990	0.90	2.98
	50	Whole State	45383	745.43	90.14	400	990	0.90	2.69
	50	Female	22577	743.67	88.37	400	990	0.90	2.70
	50	Male	22768	747.24	91.79	400	990	0.91	2.67
	50	Asian	850	792.93	95.07	400	990	0.90	2.34
	50	African American	4056	700.87	92.34	400	990	0.91	2.94
	50	Hispanic	6882	720.35	89.24	400	990	0.90	2.84
4	50	Indian American	6901	740.12	84.73	400	990	0.89	2.73
4	50	White	23658	760.45	87.01	400	990	0.89	2.58
	50	Multiracial	3036	743.62	87.52	400	990	0.90	2.70
	50	ELL	3145	690.44	90.27	400	990	0.90	2.99
	50	IEP	5280	700.62	92.27	400	990	0.91	2.95
	50	Section 504	358	728.45	84.18	433	990	0.89	2.83
	50	Low SES	27413	725.22	86.26	400	990	0.90	2.82
	50	Accommodated	4314	678.26	85.73	400	990	0.89	3.07

Table 18.1 Spring 2013, Mathematics Grades 5 & 6 State and Subgroup Scale Score Descriptive Data

Tubic	No.	2013, Wathematics	Sample	Scale S		Min Scale Score	Max Scale Score	Coefficient	
Grade	of Items	Subgroup	Size	Mean	SD	Obtained	Obtained	Alpha	SEM
_	50	Whole State	44295	740.71	86.98	400	990	0.89	2.81
	50	Female	22105	740.57	84.76	400	990	0.89	2.81
	50	Male	22162	740.89	89.13	400	990	0.90	2.80
	50	Asian	857	793.53	91.96	400	990	0.90	2.43
	50	African American	4030	700.98	88.34	400	990	0.89	3.01
	50	Hispanic	6472	721.58	86.66	400	990	0.89	2.92
5	50	Indian American	7075	729.19	82.77	400	990	0.88	2.88
3	50	White	22950	754.83	84.01	400	990	0.88	2.72
	50	Multiracial	2911	739.28	84.39	400	990	0.89	2.82
	50	ELL	2570	684.53	88.79	400	990	0.89	3.09
	50	IEP	4904	690.29	89.55	400	990	0.89	3.06
	50	Section 504	372	723.38	80.87	505	990	0.88	2.93
	50	Low SES	26497	721.57	83.23	400	990	0.89	2.92
	50	Accommodated	4057	673.80	84.86	400	990	0.87	3.14
	49	Whole State	43222	737.09	78.86	400	990	0.90	2.94
	49	Female	21425	734.23	76.48	400	990	0.90	2.95
	49	Male	21791	739.91	81.02	400	990	0.90	2.92
	49	Asian	875	785.87	85.70	400	990	0.91	2.62
	49	African American	3754	697.31	78.99	400	990	0.89	3.09
	49	Hispanic	5999	715.37	78.64	400	990	0.89	3.04
6	49	Indian American	6964	729.55	74.65	400	990	0.89	2.99
U	49	White	22691	750.32	75.55	400	990	0.89	2.88
	49	Multiracial	2939	733.37	78.78	400	990	0.90	2.95
	49	ELL	1896	676.20	82.90	400	990	0.88	3.14
	49	IEP	4275	679.37	83.75	400	990	0.89	3.13
	49	Section 504	397	726.55	72.03	400	939	0.89	3.01
	49	Low SES	24785	717.79	75.41	400	990	0.89	3.04
	49	Accommodated	2900	666.63	79.15	400	990	0.87	3.16

Table 18.2 Spring 2013, Mathematics Grades 7 & 8 State and Subgroup Scale Score Descriptive Data

1 abic .	No.	g 2015, Mathematics (Sample	Scale S		Min Scale Score	Max Scale Score	Coefficient	
Grade	of Items	Subgroup	Size	Mean	SD	Obtained	Obtained	Alpha	SEM
	50	Whole State	43146	732.30	80.70	400	990	0.89	3.02
	50	Female	21497	730.67	76.80	400	990	0.88	3.03
	50	Male	21641	733.92	84.37	400	990	0.90	3.00
	50	Asian	813	787.77	84.70	400	990	0.90	2.69
	50	African American	3868	691.93	80.87	400	968	0.87	3.14
	50	Hispanic	5695	709.57	77.29	400	990	0.87	3.11
7	50	Indian American	7099	726.05	75.10	400	990	0.87	3.06
/	50	White	22762	745.90	78.50	400	990	0.89	2.96
	50	Multiracial	2909	723.75	81.03	400	990	0.88	3.05
	50	ELL	1889	673.07	83.51	400	990	0.85	3.19
	50	IEP	3953	669.02	87.38	400	990	0.86	3.19
	50	Section 504	401	713.35	85.27	400	968	0.89	3.08
	50	Low SES	24091	712.31	77.49	400	990	0.87	3.10
	50	Accommodated	2644	659.24	85.68	400	916	0.85	3.21
	50	Whole State	41377	732.09	83.25	400	990	0.90	3.00
	50	Female	20755	732.31	81.87	400	990	0.90	3.00
	50	Male	20615	731.87	84.61	400	990	0.91	2.99
	50	Asian	820	793.94	93.46	400	990	0.91	2.59
	50	African American	3675	697.81	84.60	400	990	0.90	3.13
	50	Hispanic	5245	709.20	82.49	400	990	0.90	3.10
8	50	Indian American	6747	724.12	79.06	400	990	0.90	3.05
O	50	White	22184	743.91	80.14	400	990	0.90	2.94
	50	Multiracial	2706	727.21	84.23	400	990	0.90	3.02
	50	ELL	1785	666.86	80.55	400	990	0.88	3.22
	50	IEP	3258	666.94	82.85	400	990	0.88	3.22
	50	Section 504	382	716.76	89.62	400	990	0.91	3.07
	50	Low SES	22074	711.44	80.31	400	990	0.89	3.10
	50	Accommodated	2070	655.55	78.46	400	990	0.86	3.25

Table 19. Spring 2013, Reading Grades 3 & 4 State and Subgroup Scale Score Descriptive Data

14510	No.	2013, Reading Grade	Sample	Scale S		Min Scale Score	Max Scale Score	Coefficient	
Grade	of Items	Subgroup	Size	Mean	SD	Obtained	Obtained	Alpha	SEM
	50	Whole State	45683	741.22	86.35	400	990	0.90	2.81
	50	Female	22691	747.94	83.61	400	990	0.90	2.76
	50	Male	22967	734.66	88.45	400	990	0.91	2.85
	50	Asian	923	768.66	92.10	400	990	0.91	2.63
	50	African American	4061	705.13	89.78	400	990	0.91	2.99
	50	Hispanic	7177	710.84	85.97	400	990	0.90	2.98
3	50	Indian American	6846	736.95	82.58	400	990	0.90	2.84
3	50	White	23524	756.68	82.16	400	990	0.89	2.72
	50	Multiracial	3152	742.78	85.75	400	990	0.90	2.80
	50	ELL	4665	687.62	83.57	400	990	0.89	3.09
	50	IEP	4889	687.55	101.37	400	990	0.92	3.03
	50	Section 504	294	721.37	84.21	400	961	0.90	2.93
	50	Low SES	27847	721.91	84.78	400	990	0.90	2.92
	50	Accommodated	3620	654.85	93.22	400	990	0.90	3.16
	50	Whole State	44704	729.59	77.54	400	990	0.89	2.85
	50	Female	22405	735.77	75.52	400	990	0.88	2.81
	50	Male	22269	723.42	79.01	400	990	0.89	2.88
	50	Asian	832	754.15	82.30	400	990	0.89	2.66
	50	African American	3995	695.10	78.64	400	990	0.89	3.03
	50	Hispanic	6744	704.38	77.12	400	990	0.89	2.99
4	50	Indian American	6786	724.79	75.10	400	990	0.88	2.88
7	50	White	23377	743.20	74.64	400	990	0.88	2.76
	50	Multiracial	2970	730.24	73.00	400	990	0.88	2.85
	50	ELL	2950	668.09	77.07	400	890	0.88	3.15
	50	IEP	4695	675.59	89.64	400	990	0.91	3.09
	50	Section 504	361	718.86	71.78	513	951	0.87	2.95
	50	Low SES	26892	711.31	75.03	400	990	0.88	2.96
	50	Accommodated	3381	649.10	81.98	400	951	0.89	3.20

Table 19.1 Spring 2013, Reading Grades 5 & 6 State and Subgroup Scale Score Descriptive Data

Table	No.	g 2013, Reading Grad		Scale S		Min Scale Score	Max Scale Score	Coefficient	
Crada		Cuhanaun	Sample _		SD				SEM
Grade	of Items	Subgroup	Size	Mean		Obtained	Obtained	Alpha	
	50	Whole State	43798	735.55	84.47	400	990	0.90	2.64
	50	Female	21983	742.93	82.41	400	990	0.89	2.59
	50	Male	21790	728.16	85.85	400	990	0.90	2.69
	50	Asian	839	763.51	94.40	487	990	0.91	2.43
	50	African American	3980	698.29	83.91	400	990	0.90	2.90
	50	Hispanic	6345	706.17	82.52	400	990	0.90	2.85
5	50	Indian American	6995	727.64	81.70	400	990	0.89	2.70
3	50	White	22743	751.63	80.96	400	990	0.88	2.52
	50	Multiracial	2896	735.83	83.34	400	990	0.90	2.64
	50	ELL	2391	655.52	84.15	400	990	0.89	3.11
	50	IEP	4463	670.80	95.97	400	990	0.92	3.00
	50	Section 504	371	721.48	82.14	400	990	0.90	2.76
	50	Low SES	26092	715.32	82.14	400	990	0.90	2.79
	50	Accommodated	3350	645.29	89.46	400	990	0.90	3.13
	50	Whole State	42971	731.18	77.53	400	990	0.89	2.78
	50	Female	21436	736.54	75.81	400	990	0.88	2.75
	50	Male	21530	725.86	78.84	400	990	0.89	2.81
	50	Asian	844	759.34	84.15	400	990	0.89	2.58
	50	African American	3754	697.73	74.66	400	990	0.89	2.98
	50	Hispanic	5881	704.73	75.47	400	990	0.89	2.93
	50	Indian American	6989	724.31	74.02	400	990	0.88	2.83
6	50	White	22554	745.01	75.34	400	990	0.87	2.70
	50	Multiracial	2949	728.96	78.10	400	990	0.88	2.80
	50	ELL	1744	652.86	75.21	400	966	0.88	3.14
	50	IEP	4091	666.62	83.42	400	990	0.90	3.08
	50	Section 504	398	719.01	77.09	400	899	0.89	2.84
	50	Low SES	24669	712.05	74.40	400	990	0.88	2.90
	50	Accommodated	2392	649.18	78.53	400	990	0.89	3.16

Table 19.2 Spring 2013, Reading Grades 7 & 8 State and Subgroup Scale Score Descriptive Data

	No.	g 2013, Reading Grad	Sample	Scale S		Min Scale Score	Max Scale Score	Coefficient	
Grade	of Items	Subgroup	Size	Mean	SD	Obtained	Obtained	Alpha	SEM
	50	Whole State	43368	729.88	67.56	400	990	0.88	2.66
	50	Female	21678	736.47	66.40	400	990	0.87	2.60
	50	Male	21687	723.31	68.06	400	990	0.89	2.72
	50	Asian	814	753.21	75.92	400	990	0.89	2.44
	50	African American	3957	697.58	67.04	400	990	0.89	2.90
	50	Hispanic	5668	706.73	66.07	400	990	0.89	2.84
7	50	Indian American	7140	728.02	63.74	400	990	0.87	2.68
/	50	White	22874	741.55	65.33	400	990	0.87	2.56
	50	Multiracial	2915	725.28	67.59	400	990	0.88	2.70
	50	ELL	1792	663.91	65.72	400	990	0.88	3.11
	50	IEP	3965	675.21	73.89	400	990	0.90	3.03
	50	Section 504	412	717.01	64.65	515	990	0.88	2.79
	50	Low SES	24278	714.68	65.30	400	990	0.88	2.79
	50	Accommodated	2229	660.59	72.11	400	990	0.89	3.10
	50	Whole State	42341	750.16	82.06	400	990	0.88	2.72
	50	Female	21238	759.25	81.30	400	990	0.87	2.66
	50	Male	21098	741.03	81.79	400	990	0.88	2.77
	50	Asian	810	781.96	90.99	400	990	0.89	2.51
	50	African American	3830	715.05	82.88	400	990	0.89	2.93
	50	Hispanic	5326	723.37	85.36	400	990	0.89	2.88
8	50	Indian American	6943	744.76	79.20	400	990	0.87	2.76
O	50	White	22671	763.06	78.23	400	990	0.86	2.64
	50	Multiracial	2761	748.81	80.02	400	990	0.87	2.73
	50	ELL	1705	665.33	82.15	400	990	0.88	3.15
	50	IEP	3459	676.62	86.02	400	990	0.90	3.09
	50	Section 504	391	740.33	80.77	400	990	0.87	2.78
	50	Low SES	22681	728.96	80.12	400	990	0.88	2.86
	50	Accommodated	1747	660.33	83.62	400	977	0.89	3.15

Table 20. Spring 2013, Science Grades 5 & 8 State and Subgroup Scale Score Descriptive Data

	No.		Sample	Scale S	core	Min Scale Score	Max Scale Score	Coefficient	
Grade	of Items	Subgroup	Size	Mean	SD	Obtained	Obtained	Alpha	SEM
	45	Whole State	44805	695.10	72.00	400	990	0.86	2.84
	45	Female	22365	692.06	68.78	400	990	0.85	2.86
	45	Male	22409	698.15	74.99	400	990	0.87	2.81
	45	Asian	859	717.47	76.01	400	990	0.86	2.70
	45	African American	4132	653.82	72.74	400	990	0.85	3.01
	45	Hispanic	6546	671.43	69.80	400	990	0.84	2.96
5	45	Indian American	7154	691.19	68.73	400	990	0.84	2.87
3	45	White	23172	709.50	68.38	400	990	0.84	2.77
	45	Multiracial	2942	695.23	72.31	400	990	0.86	2.84
	45	ELL	2596	638.30	72.44	400	919	0.82	3.07
	45	IEP	5438	653.01	78.48	400	990	0.86	3.01
	45	Section 504	374	683.93	73.99	400	990	0.85	2.90
	45	Low SES	26904	678.71	70.25	400	990	0.85	2.93
	45	Accommodated	4444	637.41	73.88	400	990	0.83	3.07
	45	Whole State	44209	694.21	57.11	400	990	0.85	2.98
	45	Female	21997	693.66	53.86	400	990	0.84	2.99
	45	Male	22171	694.79	60.14	400	990	0.86	2.97
	45	Asian	836	721.10	55.71	400	990	0.86	2.82
	45	African American	4124	664.80	61.66	400	849	0.82	3.05
	45	Hispanic	5712	674.71	59.09	400	894	0.83	3.03
8	45	Indian American	7239	690.60	53.78	400	990	0.83	3.01
O	45	White	23596	704.20	53.48	400	990	0.84	2.95
	45	Multiracial	2702	694.39	57.07	400	894	0.85	2.98
	45	ELL	2028	642.62	62.65	400	824	0.76	3.08
	45	IEP	4613	649.11	67.02	400	990	0.81	3.07
	45	Section 504	397	692.84	56.48	400	894	0.85	2.99
	45	Low SES	24011	679.97	58.17	400	990	0.83	3.03
	45	Accommodated	2807	639.76	65.72	400	824	0.77	3.08

81.37

-80.57

Table 21. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test:

Accommodated/Non Accommodated Standard Error Sig. Mean Difference Grade DF (2-tailed) Difference t 3 <.0001 -69.21 -52.62 5826.14 85.82 4 -53.98 5305.59 <.0001 -74.23 87.48 5 -52.72 4898.13 <.0001 -73.65 84.34 6 -49.75 -75.53 76.56 3299.11 <.0001 7 -45.49 2936.30 <.0001 -77.83 78.51

<.0001

-45.45 Note: SEM at or closest above the cut scores.

8

Table 22. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test:

2310.57

Accommodated/Non Accommodated

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
3	-58.64	4110.01	<.0001	-93.81	82.55
4	-59.83	3836.03	<.0001	-87.07	74.04
5	-61.25	3800.95	<.0001	-97.73	80.38
6	-52.69	2652.50	<.0001	-86.84	74.93
7	-46.80	2429.73	<.0001	-73.05	65.61
8	-45.94	1885.24	<.0001	-93.70	79.91

Note: SEM at or closest above the cut scores.

Table 23. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test:

Accommodated/Non Accommodated

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
5	-55.20	5329.43	<.0001	-64.04	69.41
8	-45.81	3073.80	<.0001	-58.14	55.33

Table 24. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test: ELL/Non ELL

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
3	-37.53	6131.80	<.0001	-48.33	87.08
4	-35.46	3611.86	<.0001	-59.09	88.89
5	-33.12	2871.50	<.0001	-59.64	85.85
6	-32.80	2049.96	<.0001	-63.68	77.77
7	-31.58	2047.87	<.0001	-61.93	79.70
8	-34.95	1955.07	<.0001	-68.17	82.09

Table 25. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test: ELL/Non ELL

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
3	-46.18	5803.59	<.0001	-59.7	84.44
4	-44.9	3363.69	<.0001	-65.84	75.8
5	-47.89	2659.77	<.0001	-84.65	82.25
6	-44.39	1896.15	<.0001	-81.64	75.84
7	-43.39	1950.8	<.0001	-68.82	66.16
8	-43.56	1842.58	<.0001	-88.38	80.2

Note: SEM at or closest above the cut scores.

Table 26. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test: ELL/Non ELL

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
5	-41.22	2905.52	<.0001	-60.29	70.61
8	-38.14	2183.50	<.0001	-54.06	55.98

Table 27. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test: Female/Male

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
3	-8.89	46272.55	<.0001	-7.30	88.25
4	-4.22	45303.53	<.0001	-3.57	90.10
5	-0.38	44164.41	0.7006	-0.32	86.98
6	-7.51	43142.92	<.0001	-5.69	78.80
7	-4.18	42811.18	<.0001	-3.25	80.69
8	0.54	41302.88	0.5867	0.45	83.25

Table 28. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test: Female/Male

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
3	16.49	45566.97	<.0001	13.28	86.08
4	16.89	44555.12	<.0001	12.35	77.28
5	18.36	43663.49	<.0001	14.77	84.14
6	14.30	42912.16	<.0001	10.67	77.34
7	20.38	43337.62	<.0001	13.16	67.24
8	22.99	42327.29	<.0001	18.22	81.54

Note: SEM at or closest above the cut scores.

Table 29. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test: Female/Male

_		1 0	<u> </u>	<u> </u>		•
_				Sig.	Mean	Standard Error
_	Grade	t	DF	(2-tailed)	Difference	Difference
_	5	-8.95	44456.64	<.0001	-6.09	71.95
	8	-2.08	43711.20	0.0378	-1.13	57.10

Table 30. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test: IEP/Non IEP

			Sig.	Mean	Standard Error
Grade	t DF (2-		(2-tailed)	Difference	Difference
3	-32.80	6701.13	<.0001	-44.03	87.19
4	-37.74	6612.51	<.0001	-50.72	88.67
5	-42.07	6043.16	<.0001	-56.70	85.14
6	-47.91	5069.74	<.0001	-64.05	76.50
7	-48.26	4595.32	<.0001	-69.66	78.16
8	-46.85	3807.15	<.0001	-70.71	81.04

Table 31. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test: IEP/Non IEP

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
3	-39.92	5681.47	<.0001	-60.10	84.33
4	-44.41	5458.57	<.0001	-60.34	75.30
5	-48.33	5186.22	<.0001	-72.09	81.61
6	-52.60	4785.31	<.0001	-71.36	74.65
7	-49.42	4589.85	<.0001	-60.17	65.30
8	-52.83	3986.36	<.0001	-80.08	79.07

Note: SEM at or closest above the cut scores.

Table 32. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test: IEP/Non IEP

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
5	-42.78	6652.51	<.0001	-47.90	70.28
8	-49.24	5316.69	<.0001	-50.36	55.00

Table 33. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test: Low SES/High SES

				Sig.	Mean	Standard Error
_	Grade	t DF		(2-tailed)	Difference	Difference
	3	-62.28	38957.87	<.0001	-50.15	84.88
	4	-61.27	38143.00	<.0001	-51.05	86.62
	5	-58.48	37742.18	<.0001	-47.64	83.78
	6	-61.44	39581.00	<.0001	-45.23	75.62
	7	-60.23	40875.23	<.0001	-45.26	77.51
	8	-55.96	40653.87	<.0001	-44.26	80.27

Table 34. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test:

Low SES/High SES

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
3	-63.00	39626.97	<.0001	-49.45	82.91
4	-64.36	38869.40	<.0001	-45.89	74.21
5	-64.10	39028.10	<.0001	-50.05	80.82
6	-62.01	39510.23	<.0001	-44.92	74.28
7	-54.61	40956.43	<.0001	-34.53	65.35
8	-59.58	41853.13	<.0001	-45.66	78.84

Note: SEM at or closest above the cut scores.

 Table 35. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test:

Low SES/High SES

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
5	-62.02	39410.37	<.0001	-41.03	69.14
8	-60.08	44138.96	<.0001	-31.17	54.96

Table 36. Spring 2013, Mathematics Subgroup Scale Score Mean Differences, t-test: Section 504/Non Section 504

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
3	-3.32	46314.00	0.0009	-17.25	88.32
4	-3.58	45381.00	0.0003	-17.12	90.13
5	-3.86	44293.00	0.0001	-17.47	86.96
6	-2.68	43220.00	0.0075	-10.64	78.85
7	-4.72	43144.00	<.0001	-19.12	80.68
8	-3.61	41375.00	0.0003	-15.47	83.24

Table 37. Spring 2013, Reading Subgroup Scale Score Mean Differences, t-test: Section 504/Non Section 504

			Sig.	Mean	Standard Error
Grade	ade t DF		(2-tailed)	Difference	Difference
3	-3.96	45681.00	<.0001	-19.98	86.33
4	-2.64	44702.00	0.0083	-10.81	77.53
5	-3.22	43796.00	0.0013	-14.19	84.46
6	-3.15	42969.00	0.0016	-12.29	77.52
7	-3.89	43366.00	0.0001	-12.99	67.55
8	-2.38	42339.00	0.0173	-9.92	82.05

Note: SEM at or closest above the cut scores.

Table 38. Spring 2013, Science Subgroup Scale Score Mean Differences, t-test: Section 504/Non Section 504

			Sig.	Mean	Standard Error
Grade	t	DF	(2-tailed)	Difference	Difference
5	-3.01	44803.00	0.0026	-11.27	72.00
8	-0.48	44207.00	0.6322	-1.38	57.12

Table 39. Spring 2013, Mathematics Subgroup Mean Differences, ANOVA: Ethnicity

Grade	Categories	Sum of Squares	df	Mean Square	\overline{F}	Sig.
3	Between Groups	22245144.80	5	4449029.00	607.58	<.0001
3	Within Groups	339104510.20	46310	7322.50		
3	Total	361349655.00	46315		•	
4	Between Groups	19842641.70	5	3968528.30	516.09	<.0001
4	Within Groups	348931756.70	45377	7689.60	•	
4	Total	368774398.40	45382	•	•	•
5	Between Groups	16643559.70	5	3328711.90	462.97	<.0001
5	Within Groups	318431688.10	44289	7189.90	•	•
5	Total	335075247.80	44294		•	
6	Between Groups	15261649.40	5	3052329.90	520.36	<.0001
6	Within Groups	253495412.10	43216	5865.80		
6	Total	268757061.40	43221		•	
7	Between Groups	16447623.50	5	3289524.70	536.44	<.0001
7	Within Groups	264538408.40	43140	6132.10	•	
7	Total	280986031.90	43145		•	
8	Between Groups	13792216.50	5	2758443.30	418.09	<.0001
8	Within Groups	272952949.10	41371	6597.70	•	•
8	Total	286745165.60	41376			

Note: df = Degrees of Freedom

Table 40. Spring 2013, Reading Subgroup Mean Differences, ANOVA: Ethnicity

Grade	Categories	Sum of Squares	df	Mean Square	F	Sig.
3	Between Groups	18364022.20	5	3672804.40	520.60	<.0001
3	Within Groups	322245961.10	45677	7054.90	•	•
3	Total	340609983.30	45682		•	•
4	Between Groups	14026352.50	5	2805270.50	492.22	<.0001
4	Within Groups	254745023.10	44698	5699.20		
4	Total	268771375.60	44703			
5	Between Groups	17976784.00	5	3595356.80	534.59	<.0001
5	Within Groups	294518082.00	43792	6725.40		
5	Total	312494866.00	43797			
6	Between Groups	13643341.20	5	2728668.20	479.22	<.0001
6	Within Groups	244644053.60	42965	5694.00		
6	Total	258287394.80	42970		•	
7	Between Groups	10806463.60	5	2161292.70	500.81	<.0001
7	Within Groups	187131950.80	43362	4315.60		
7	Total	197938414.40	43367		•	
8	Between Groups	13343716.30	5	2668743.30	415.75	<.0001
8	Within Groups	271751838.10	42335	6419.10		
8	Total	285095554.40	42340			•

Note: df = Degrees of Freedom

Table 41. Spring 2013, Science Subgroup Mean Differences, ANOVA: Ethnicity

Grade	Categories	Sum of Squares	df	Mean Square	F	Sig.
5	Between Groups	16053502.70	5	3210700.50	665.21	<.0001
5	Within Groups	216225933.40	44799	4826.60		
5	Total	232279436.10	44804		•	
8	Between Groups	8792562.80	5	1758512.60	574.02	<.0001
8	Within Groups	135417058.00	44203	3063.50		•
8	Total	144209620.80	44208		•	

Note: df = Degrees of Freedom

Table	Dependent	aties, I air- Wise Duffile	ett's C Post-Hoc Comparison of	Mean	Dunnett's		ence Interval
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	C		Upper Bound
1		•	Asian	40.64(*)	2.53	33.14	48.13
		American	African Amer. (Not Hispanic)	-47.43(*)	2.53	-51.69	-43.17
		American Indian/Alaskan	Hispanic	-26.1(*)	2.53	-29.73	-22.47
		mulan/Alaskan	Multiracial	-0.09	2.53	-4.72	4.55
			White (Not Hispanic)	16.46(*)	2.53	13.50	19.41
			Amer. Indian/Alaskan	-40.64(*)	2.32	-47.49	-33.78
			African Amer. (Not Hispanic)	-88.07(*)	2.32	-95.20	-80.94
		Asian	Hispanic	-66.74(*)	2.32	-73.57	-59.90
			Multiracial	-40.72(*)	2.32	-48.05	-33.40
			White (Not Hispanic)	-24.18(*)	2.32	-30.73	-17.62
			Amer. Indian/Alaskan	47.43(*)	2.49	43.23	51.63
		African American (Not Hispanic)	Asian	88.07(*)	2.49	80.39	95.75
			Hispanic	21.33(*)	2.49	17.17	25.49
			Multiracial	47.34(*)	2.49	42.31	52.38
3	SS		White (Not Hispanic)	63.89(*)	2.49	60.29	67.49
3	သ	Hispanic	Amer. Indian/Alaskan	26.1(*)	2.53	22.47	29.74
			Asian	66.74(*)	2.53	59.26	74.21
			African Amer. (Not Hispanic)	-21.33(*)	2.53	-25.55	-17.11
			Multiracial	26.01(*)	2.53	21.42	30.61
			White (Not Hispanic)	42.56(*)	2.53	39.66	45.46
			Amer. Indian/Alaskan	0.09	2.47	-4.44	4.61
			Asian	40.72(*)	2.47	32.91	48.54
		Multiracial	African Amer. (Not Hispanic)	-47.34(*)	2.47	-52.33	-42.36
			Hispanic	-26.01(*)	2.47	-30.50	-21.53
			White (Not Hispanic)	16.55(*)	2.47	12.56	20.53
			Amer. Indian/Alaskan	-16.46(*)	2.56	-19.45	-13.46
			Asian	24.18(*)	2.56	16.92	31.44
		White (Not Hispanic)	African Amer. (Not Hispanic)	-63.89(*)	2.56	-67.59	-60.19
			Hispanic	-42.56(*)	2.56	-45.49	-39.63
			Multiracial	-16.55(*)	2.56	-20.68	-12.41

^(*)Significant differences

	Dependent			Mean	Dunnett's	95% Confide	ence Interval
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	C	Lower Bound	Upper Bound
		American	Asian	52.81(*)	2.53	44.74	60.88
			African Amer. (Not Hispanic)	-39.25(*)	2.53	-43.65	-34.86
		Indian/Alaskan	Hispanic	-19.77(*)	2.53	-23.56	-15.99
		muran/Araskan	Multiracial	3.50	2.53	-1.33	8.34
			White (Not Hispanic)	20.33(*)	2.53	17.29	23.37
			Amer. Indian/Alaskan	-52.81(*)	2.31	-60.16	-45.45
			African Amer. (Not Hispanic)	-92.06(*)	2.31	-99.69	-84.43
		Asian	Hispanic	-72.58(*)	2.31	-79.93	-65.23
			Multiracial	-49.3(*)	2.31	-57.15	-41.46
			White (Not Hispanic)	-32.48(*)	2.31	-39.54	-25.42
		African American (Not Hispanic)	Amer. Indian/Alaskan	39.25(*)	2.50	34.92	43.58
			Asian	92.06(*)	2.50	83.80	100.32
			Hispanic	19.48(*)	2.50	15.15	23.81
			Multiracial	42.76(*)	2.50	37.50	48.01
4	SS		White (Not Hispanic)	59.58(*)	2.50	55.86	63.30
4	55	Hispanic	Amer. Indian/Alaskan	19.77(*)	2.53	15.99	23.56
			Asian	72.58(*)	2.53	64.51	80.65
			African Amer. (Not Hispanic)	-19.48(*)	2.53	-23.87	-15.08
			Multiracial	23.28(*)	2.53	18.44	28.11
			White (Not Hispanic)	40.1(*)	2.53	37.06	43.14
			Amer. Indian/Alaskan	-3.50	2.47	-8.22	1.22
			Asian	49.3(*)	2.47	40.90	57.71
		Multiracial	African Amer. (Not Hispanic)	-42.76(*)	2.47	-47.95	-37.56
			Hispanic	-23.28(*)	2.47	-28.00	-18.56
			White (Not Hispanic)	16.83(*)	2.47	12.65	21.00
			Amer. Indian/Alaskan	-20.33(*)	2.56	-23.41	-17.25
			Asian	32.48(*)	2.56	24.63	40.33
		White (Not Hispanic)	African Amer. (Not Hispanic)	-59.58(*)	2.56	-63.40	-55.76
			Hispanic	-40.1(*)	2.56	-43.18	-37.02
			Multiracial	-16.83(*)	2.56	-21.16	-12.49

^(*)Significant differences

Tuble	Dependent	ucies, i un vvise Dunne	eu's C Post-floc Companson of S	Mean	Dunnett's	95% Confide	
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	C	Lower Bound	Upper Bound
			Asian	64.34(*)	2.53	56.57	72.11
		American	African Amer. (Not Hispanic)	-28.21(*)	2.53	-32.46	-23.97
		Indian/Alaskan	Hispanic	-7.61(*)	2.53	-11.31	-3.92
		IIIQIaii/Aiaskaii	Multiracial	10.09(*)	2.53	5.36	14.82
			White (Not Hispanic)	25.64(*)	2.53	22.72	28.56
			Amer. Indian/Alaskan	-64.34(*)	2.31	-71.42	-57.25
			African Amer. (Not Hispanic)	-92.55(*)	2.31	-99.92	-85.18
		Asian	Hispanic	-71.95(*)	2.31	-79.07	-64.83
			Multiracial	-54.25(*)	2.31	-61.86	-46.64
			White (Not Hispanic)	-38.7(*)	2.31	-45.51	-31.88
			Amer. Indian/Alaskan	28.21(*)	2.50	24.04	32.39
		African American (Not Hispanic)	Asian	92.55(*)	2.50	84.59	100.52
			Hispanic	20.6(*)	2.50	16.35	24.85
			Multiracial	38.3(*)	2.50	33.15	43.45
5	SS		White (Not Hispanic)	53.85(*)	2.50	50.24	57.47
3	သ	Hispanic	Amer. Indian/Alaskan	7.61(*)	2.53	3.92	11.30
			Asian	71.95(*)	2.53	64.16	79.75
			African Amer. (Not Hispanic)	-20.6(*)	2.53	-24.90	-16.30
			Multiracial	17.7(*)	2.53	12.92	22.49
			White (Not Hispanic)	33.25(*)	2.53	30.24	36.27
			Amer. Indian/Alaskan	-10.09(*)	2.47	-14.70	-5.48
			Asian	54.25(*)	2.47	46.12	62.38
		Multiracial	African Amer. (Not Hispanic)	-38.3(*)	2.47	-43.39	-33.21
			Hispanic	-17.7(*)	2.47	-22.37	-13.03
			White (Not Hispanic)	15.55(*)	2.47	11.43	19.67
			Amer. Indian/Alaskan	-25.64(*)	2.56	-28.60	-22.68
			Asian	38.7(*)	2.56	31.13	46.26
		White (Not Hispanic)	African Amer. (Not Hispanic)	-53.85(*)	2.56	-57.57	-50.14
			Hispanic	-33.25(*)	2.56	-36.31	-30.19
(*) G:; C	1:00		Multiracial	-15.55(*)	2.56	-19.83	-11.27

^(*)Significant differences

14510	Dependent	acres, 1 air 11 ise Baille	etts C Post-floc Companson of S	Mean	Dunnett's	95% Confide	
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	C	Lower Bound	Upper Bound
		American	Asian	56.33(*)	2.54	49.36	63.29
			African Amer. (Not Hispanic)	-32.23(*)	2.54	-36.17	-28.30
		Indian/Alaskan	Hispanic	-14.17(*)	2.54	-17.59	-10.75
		Iliulali/Alaskali	Multiracial	3.83	2.54	-0.45	8.10
			White (Not Hispanic)	20.78(*)	2.54	18.12	23.44
			Amer. Indian/Alaskan	-56.33(*)	2.32	-62.69	-49.96
			African Amer. (Not Hispanic)	-88.56(*)	2.32	-95.22	-81.90
		Asian	Hispanic	-70.5(*)	2.32	-76.92	-64.08
			Multiracial	-52.5(*)	2.32	-59.33	-45.67
			White (Not Hispanic)	-35.55(*)	2.32	-41.66	-29.44
			Amer. Indian/Alaskan	32.23(*)	2.49	28.37	36.10
		African American (Not Hispanic)	Asian	88.56(*)	2.49	81.39	95.73
			Hispanic	18.06(*)	2.49	14.09	22.04
			Multiracial	36.06(*)	2.49	31.35	40.76
6	SS		White (Not Hispanic)	53.01(*)	2.49	49.65	56.38
U	သ		Amer. Indian/Alaskan	14.17(*)	2.53	10.76	17.58
			Asian	70.5(*)	2.53	63.49	77.50
		Hispanic	African Amer. (Not Hispanic)	-18.06(*)	2.53	-22.09	-14.03
			Multiracial	18(*)	2.53	13.64	22.35
			White (Not Hispanic)	34.95(*)	2.53	32.14	37.76
			Amer. Indian/Alaskan	-3.83	2.47	-7.99	0.34
			Asian	52.5(*)	2.47	45.21	59.79
		Multiracial	African Amer. (Not Hispanic)	-36.06(*)	2.47	-40.72	-31.40
			Hispanic	-18(*)	2.47	-22.26	-13.73
			White (Not Hispanic)	16.95(*)	2.47	13.24	20.66
			Amer. Indian/Alaskan	-20.78(*)	2.56	-23.47	-18.09
			Asian	35.55(*)	2.56	28.78	42.32
		White (Not Hispanic)	African Amer. (Not Hispanic)	-53.01(*)	2.56	-56.47	-49.55
			Hispanic	-34.95(*)	2.56	-37.80	-32.10
(*) 6:: c	1:00		Multiracial	-16.95(*)	2.56	-20.80	-13.10

^(*)Significant differences

Table	Dependent	aucs, Fair-Wise Duffile	ett's C Post-Hoc Comparison of S	Mean	Dunnett's	95% Confide	
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	C	Lower Bound	Upper Bound
Grade	v arrabic	(1) Etimieity	Asian	61.72(*)	2.54	54.37	69.08
			African Amer. (Not Hispanic)	-34.12(*)	2.54	-38.09	-30.15
		American	Hispanic	-16.48(*)	2.54	-20.02	-12.95
		Indian/Alaskan	Multiracial	-2.31	2.54	-6.68	2.07
			White (Not Hispanic)	19.85(*)	2.54	17.15	22.55
			Amer. Indian/Alaskan	-61.72(*)	2.34	-68.42	-55.03
			African Amer. (Not Hispanic)	-95.84(*)	2.31	-102.81	-88.87
		Asian	Hispanic	-78.21(*)	2.31	-84.98	-71.43
		Asian	Multiracial	-64.03(*)	2.31	-71.20	-56.86
			White (Not Hispanic)	-41.87(*)	2.31	-48.33	-35.42
			Amer. Indian/Alaskan	34.12(*)	2.50	30.21	38.03
			Asian	95.84(*)	2.50	88.29	103.39
		African American (Not Hispanic)	Hispanic	17.63(*)	2.50	13.56	21.71
			Multiracial	31.81(*)	2.50	27.01	36.61
			White (Not Hispanic)	53.97(*)	2.50	50.57	57.37
7	SS		Amer. Indian/Alaskan	16.48(*)	2.52	12.97	20.00
			Asian	78.21(*)	2.52	70.79	85.62
		Hispanic	African Amer. (Not Hispanic)	-17.63(*)	2.52	-21.75	-13.52
		Trispanic	Multiracial	14.18(*)	2.52	9.67	18.68
			White (Not Hispanic)	36.33(*)	2.52	33.40	39.26
			Amer. Indian/Alaskan	2.31	2.47	-1.95	6.57
			Asian	64.03(*)	2.47	56.35	71.71
		Multiracial	African Amer. (Not Hispanic)	-31.81(*)	2.47	-36.56	-27.06
		Withaciai	Hispanic	-14.18(*)	2.47	-18.59	-9.76
			White (Not Hispanic)	22.16(*)	2.47	18.34	25.97
			Amer. Indian/Alaskan	-19.85(*)	2.56	-22.58	-17.12
			Asian	41.87(*)	2.56	34.71	49.04
		White (Not Hispanic)	African Amer. (Not Hispanic)	-53.97(*)	2.56	-57.46	-50.47
		vinte (1vot mspaine)	Hispanic	-36.33(*)	2.56	-37.40	-33.36
			Multiracial	-22.16(*)	2.56	-39.31 -26.11	-18.20
(I) (I) 10			iviuitii aciai	-22.10(')	2.30	-20.11	-10.20

^(*)Significant differences

	Dependent		ett's C Post-Hoc Comparison of S	Mean	Dunnett's	95% Confide	
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	С	Lower Bound	Upper Bound
		American	Asian	69.82(*)	2.54	62.20	77.44
			African Amer. (Not Hispanic)	-26.31(*)	2.54	-30.53	-22.08
		Indian/Alaskan	Hispanic	-14.92(*)	2.54	-18.71	-11.12
		Iliulaii/Alaskaii	Multiracial	3.09	2.54	-1.60	7.77
			White (Not Hispanic)	19.79(*)	2.54	16.92	22.65
			Amer. Indian/Alaskan	-69.82(*)	2.32	-76.78	-62.86
			African Amer. (Not Hispanic)	-96.13(*)	2.32	-103.39	-88.86
		Asian	Hispanic	-84.74(*)	2.32	-91.80	-77.67
			Multiracial	-66.73(*)	2.32	-74.23	-59.23
			White (Not Hispanic)	-50.03(*)	2.32	-56.73	-43.34
			Amer. Indian/Alaskan	26.31(*)	2.50	22.15	30.47
		African American (Not Hispanic)	Asian	96.13(*)	2.50	88.29	103.96
			Hispanic	11.39(*)	2.50	7.03	15.75
			Multiracial	29.39(*)	2.50	24.25	34.53
8	22		White (Not Hispanic)	46.09(*)	2.50	42.48	49.71
O	33	Hispanic	Amer. Indian/Alaskan	14.92(*)	2.52	11.14	18.69
			Asian	84.74(*)	2.52	77.04	92.43
			African Amer. (Not Hispanic)	-11.39(*)	2.52	-15.80	-6.98
			Multiracial	18(*)	2.52	13.15	22.85
			White (Not Hispanic)	34.7(*)	2.52	31.56	37.85
			Amer. Indian/Alaskan	-3.09	2.47	-7.65	1.48
			Asian	66.73(*)	2.47	58.74	74.73
		Multiracial	African Amer. (Not Hispanic)	-29.39(*)	2.47	-34.47	-24.31
			Hispanic	-18(*)	2.47	-22.75	-13.25
			White (Not Hispanic)	16.7(*)	2.47	12.62	20.79
			Amer. Indian/Alaskan	-19.79(*)	2.57	-22.68	-16.89
			Asian	50.03(*)	2.57	42.62	57.44
		White (Not Hispanic)	African Amer. (Not Hispanic)	-46.09(*)	2.57	-49.80	-42.38
			Hispanic	-34.7(*)	2.57	-37.90	-31.50
			Multiracial	-16.7(*)	2.57	-20.94	-12.46

^(*)Significant differences

Table	Dependent	, ran-wise Dunnetts	C Post-Hoc Comparison of Sprin	Mean	Dunnett's	95% Confidences by Eth	
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	C	Lower Bound	
Grade	v arrable	(1) Ethincity	Asian	31.71(*)	2.53	24.26	39.16
			African Amer. (Not Hispanic)	-31.82(*)	2.53	-36.03	-27.61
		American	Hispanic	-26.11(*)	2.53	-29.70	-22.52
		Indian/Alaskan	Multiracial	5.83(*)	2.53	1.26	10.41
			White (Not Hispanic)	19.73(*)	2.53	16.81	22.65
			Amer. Indian/Alaskan	-31.71(*)	2.33	-38.52	-24.89
				` '	2.31	-38.32 -70.62	-24.89 -56.44
		A ainm	African Amer. (Not Hispanic)	-63.53(*)	2.31	-70.62 -64.61	-50.44 -51.02
		Asian	Hispanic	-57.82(*)			
			Multiracial	-25.88(*)	2.31	-33.15	-18.60
			White (Not Hispanic)	-11.98(*)	2.31	-18.50	-5.45
			Amer. Indian/Alaskan	31.82(*)	2.49	27.67	35.97
		African American (Not Hispanic)	Asian	63.53(*)	2.49	55.89	71.17
			Hispanic	5.71(*)	2.49	1.60	9.83
			Multiracial	37.65(*)	2.49	32.68	42.63
3	SS		White (Not Hispanic)	51.55(*)	2.49	47.99	55.11
			Amer. Indian/Alaskan	26.11(*)	2.53	22.51	29.70
			Asian	57.82(*)	2.53	50.38	65.26
		Hispanic	African Amer. (Not Hispanic)	-5.71(*)	2.53	-9.89	-1.53
			Multiracial	31.94(*)	2.53	27.40	36.49
			White (Not Hispanic)	45.84(*)	2.53	42.97	48.71
			Amer. Indian/Alaskan	-5.83(*)	2.47	-10.30	-1.36
			Asian	25.88(*)	2.47	18.11	33.65
		Multiracial	African Amer. (Not Hispanic)	-37.65(*)	2.47	-42.58	-32.73
			Hispanic	-31.94(*)	2.47	-36.38	-27.51
			White (Not Hispanic)	13.90(*)	2.47	9.96	17.84
			Amer. Indian/Alaskan	-19.73(*)	2.56	-22.69	-16.77
			Asian	11.98(*)	2.56	4.75	19.21
		White (Not Hispanic)	African Amer. (Not Hispanic)	-51.55(*)	2.56	-55.21	-47.89
			Hispanic	-45.84(*)	2.56	-48.75	-42.94
			Multiracial	-13.90(*)	2.56	-17.98	-9.81

^(*)Significant differences

Table	Dependent	, I all-Wise Duffield's C	Post-noc Companson of Spring	Mean	Dunnett's	95% Confide	
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	С	Lower Bound	Upper Bound
		Amoricon	Asian	29.36(*)	2.53	22.34	36.38
			African Amer. (Not Hispanic)	-29.69(*)	2.53	-33.50	-25.88
		American Indian/Alaskan	Hispanic	-20.41(*)	2.53	-23.69	-17.12
		indian/Alaskan	Multiracial	5.45(*)	2.53	1.25	9.66
			White (Not Hispanic)	18.41(*)	2.53	15.77	21.05
			Amer. Indian/Alaskan	-29.36(*)	2.31	-35.76	-22.97
			African Amer. (Not Hispanic)	-59.05(*)	2.31	-65.68	-52.42
		Asian	Hispanic	-49.77(*)	2.31	-56.17	-43.37
			Multiracial	-23.91(*)	2.31	-30.74	-17.08
			White (Not Hispanic)	-10.95(*)	2.31	-17.09	-4.81
			Amer. Indian/Alaskan	29.69(*)	2.50	25.93	33.45
		African American	Asian	59.05(*)	2.50	51.87	66.23
		(Not Hispanic)	Hispanic	9.28(*)	2.50	5.52	13.05
			Multiracial	35.14(*)	2.50	30.58	39.71
4	SS		White (Not Hispanic)	48.10(*)	2.50	44.87	51.33
4	သ		Amer. Indian/Alaskan	20.41(*)	2.53	17.12	23.69
			Asian	49.77(*)	2.53	42.74	56.79
		Hispanic	African Amer. (Not Hispanic)	-9.28(*)	2.53	-13.10	-5.47
			Multiracial	25.86(*)	2.53	21.65	30.07
			White (Not Hispanic)	38.82(*)	2.53	36.17	41.46
			Amer. Indian/Alaskan	-5.45(*)	2.47	-9.56	-1.35
			Asian	23.91(*)	2.47	16.59	31.22
		Multiracial	African Amer. (Not Hispanic)	-35.14(*)	2.47	-39.66	-30.62
			Hispanic	-25.86(*)	2.47	-29.97	-21.75
			White (Not Hispanic)	12.96(*)	2.47	9.32	16.59
			Amer. Indian/Alaskan	-18.41(*)	2.56	-21.08	-15.74
			Asian	10.95(*)	2.56	4.12	17.78
		White (Not Hispanic)	African Amer. (Not Hispanic)	-48.10(*)	2.56	-51.41	-44.78
			Hispanic	-38.82(*)	2.56	-41.49	-36.14
			Multiracial	-12.96(*)	2.56	-16.73	-9.18

^(*)Significant differences

	Dependent			Mean	Dunnett's	95% Confide	
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	C	Lower Bound	Upper Bound
		American	Asian	35.87(*)	2.53	28.28	43.47
			African Amer. (Not Hispanic)	-29.35(*)	2.53	-33.48	-25.22
		Indian/Alaskan	Hispanic	-21.46(*)	2.53	-25.07	-17.86
		iliulali/Alaskali	Multiracial	8.20(*)	2.53	3.60	12.79
			White (Not Hispanic)	23.99(*)	2.53	21.15	26.84
			Amer. Indian/Alaskan	-35.87(*)	2.31	-42.79	-28.95
			African Amer. (Not Hispanic)	-65.22(*)	2.31	-72.41	-58.03
		Asian	Hispanic	-57.34(*)	2.31	-64.29	-50.38
			Multiracial	-27.68(*)	2.31	-35.10	-20.25
			White (Not Hispanic)	-11.88(*)	2.31	-18.54	-5.22
		African American (Not Hispanic)	Amer. Indian/Alaskan	29.35(*)	2.50	25.28	33.41
			Asian	65.22(*)	2.50	57.44	73.00
			Hispanic	7.88(*)	2.50	3.74	12.03
			Multiracial	37.54(*)	2.50	32.54	42.55
5	SS		White (Not Hispanic)	53.34(*)	2.50	49.82	56.86
3	33	Hispanic	Amer. Indian/Alaskan	21.46(*)	2.53	17.87	25.06
			Asian	57.34(*)	2.53	49.72	64.96
			African Amer. (Not Hispanic)	-7.88(*)	2.53	-12.08	-3.69
			Multiracial	29.66(*)	2.53	25.01	34.31
			White (Not Hispanic)	45.46(*)	2.53	42.51	48.40
			Amer. Indian/Alaskan	-8.20(*)	2.47	-12.67	-3.72
			Asian	27.68(*)	2.47	19.74	35.61
		Multiracial	African Amer. (Not Hispanic)	-37.54(*)	2.47	-42.49	-32.60
			Hispanic	-29.66(*)	2.47	-34.20	-25.12
			White (Not Hispanic)	15.80(*)	2.47	11.80	19.79
			Amer. Indian/Alaskan	-23.99(*)	2.56	-26.87	-21.12
			Asian	11.88(*)	2.56	4.48	19.27
		White (Not Hispanic)	African Amer. (Not Hispanic)	-53.34(*)	2.56	-56.96	-49.73
			Hispanic	-45.46(*)	2.56	-48.44	-42.47
			Multiracial	-15.80(*)	2.56	-19.95	-11.65

^(*)Significant differences

<u> 1 abie</u>		, ran-wise Dunnett's C	Post-Hoc Comparison of Spring	Mean	Dunnett's	•	ence Interval
Crada	Dependent Variable	(I) Ethnicity	(I) Ethnicity	Difference (J-I)	C	Lower Bound	
Grade	variable	(I) Ethnicity	(J) Ethnicity Asian			28.06	11
				35.03(*)	2.54		42.01
		American	African Amer. (Not Hispanic)	-26.58(*)	2.54	-30.45	-22.71
		Indian/Alaskan	Hispanic	-19.58(*)	2.54	-22.96	-16.19
			Multiracial	4.65(*)	2.54	0.44	8.85
			White (Not Hispanic)	20.70(*)	2.54	18.08	23.32
			Amer. Indian/Alaskan	-35.03(*)	2.31	-41.39	-28.67
			African Amer. (Not Hispanic)	-61.61(*)	2.31	-68.26	-54.97
		Asian	Hispanic	-54.61(*)	2.31	-61.04	-48.19
			Multiracial	-30.39(*)	2.31	-37.20	-23.58
			White (Not Hispanic)	-14.33(*)	2.31	-20.45	-8.21
			Amer. Indian/Alaskan	26.58(*)	2.49	22.77	30.39
		African American	Asian	61.61(*)	2.49	54.44	68.78
		(Not Hispanic)	Hispanic	7.00(*)	2.49	3.07	10.93
			Multiracial	31.23(*)	2.49	26.59	35.86
6	SS		White (Not Hispanic)	47.28(*)	2.49	43.96	50.60
Ü	သ	Hispanic	Amer. Indian/Alaskan	19.58(*)	2.53	16.21	22.95
			Asian	54.61(*)	2.53	47.60	61.63
			African Amer. (Not Hispanic)	-7.00(*)	2.53	-10.98	-3.02
			Multiracial	24.22(*)	2.53	19.92	28.53
			White (Not Hispanic)	40.28(*)	2.53	37.49	43.07
			Amer. Indian/Alaskan	-4.65(*)	2.47	-8.74	-0.55
			Asian	30.39(*)	2.47	23.10	37.67
		Multiracial	African Amer. (Not Hispanic)	-31.23(*)	2.47	-35.82	-26.63
			Hispanic	-24.22(*)	2.47	-28.43	-20.01
			White (Not Hispanic)	16.06(*)	2.47	12.40	19.71
			Amer. Indian/Alaskan	-20.7(*)	2.56	-23.35	-18.05
			Asian	14.33(*)	2.56	7.55	21.12
		White (Not Hispanic)	African Amer. (Not Hispanic)	-47.28(*)	2.56	-50.69	-43.87
			Hispanic	-40.28(*)	2.56	-43.11	-37.45

^(*)Significant differences

Table 43. Reading, Pair-Wise Dunnett's C Post-Hoc Comparison of Spring 2013 Scale Score Mean Differences by Ethnicity

Table	Dependent	, I all-Wise Dufficit's C	Post-noc Comparison of Spring	Mean	Dunnett's	95% Confide	
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	С	Lower Bound	Upper Bound
		•	Asian	25.19(*)	2.54	19.03	31.36
		American Indian/Alaskan	African Amer. (Not Hispanic)	-30.43(*)	2.54	-33.73	-27.13
			Hispanic	-21.28(*)	2.54	-24.25	-18.32
			Multiracial	-2.74	2.54	-6.40	0.93
			White (Not Hispanic)	13.53(*)	2.54	11.27	15.79
			Amer. Indian/Alaskan	-25.19(*)	2.31	-30.80	-19.58
			African Amer. (Not Hispanic)	-55.62(*)	2.31	-61.46	-49.79
		Asian	Hispanic	-46.47(*)	2.31	-52.16	-40.79
			Multiracial	-27.93(*)	2.31	-33.94	-21.92
			White (Not Hispanic)	-11.66(*)	2.31	-17.07	-6.25
			Amer. Indian/Alaskan	30.43(*)	2.50	27.18	33.68
		A frican Amarican	Asian	55.62(*)	2.50	49.31	61.94
		African American (Not Hispanic)	Hispanic	9.15(*)	2.50	5.75	12.55
			Multiracial	27.7(*)	2.50	23.69	31.70
7	SS		White (Not Hispanic)	43.96(*)	2.50	41.14	46.79
/	သ		Amer. Indian/Alaskan	21.28(*)	2.52	18.33	24.23
			Asian	46.47(*)	2.52	40.26	52.69
		Hispanic	African Amer. (Not Hispanic)	-9.15(*)	2.52	-12.59	-5.72
			Multiracial	18.55(*)	2.52	14.77	22.32
			White (Not Hispanic)	34.81(*)	2.52	32.35	37.27
			Amer. Indian/Alaskan	2.74	2.47	-0.83	6.30
			Asian	27.93(*)	2.47	21.49	34.36
		Multiracial	African Amer. (Not Hispanic)	-27.7(*)	2.47	-31.66	-23.73
			Hispanic	-18.55(*)	2.47	-22.25	-14.84
			White (Not Hispanic)	16.27(*)	2.47	13.07	19.46
			Amer. Indian/Alaskan	-13.53(*)	2.56	-15.82	-11.25
			Asian	11.66(*)	2.56	5.65	17.67
		White (Not Hispanic)	African Amer. (Not Hispanic)	-43.96(*)	2.56	-46.86	-41.06
			Hispanic	-34.81(*)	2.56	-37.31	-32.31
			Multiracial	-16.27(*)	2.56	-19.58	-12.95

^(*)Significant differences

Table 43. Reading, Pair-Wise Dunnett's C Post-Hoc Comparison of Spring 2013 Scale Score Mean Differences by Ethnicity

	Dependent	,	c 1 ost-110c Comparison of Spring	Mean	Dunnett's	95% Confide	
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	C	Lower Bound	Upper Bound
			Asian	37.19(*)	2.54	29.65	44.74
		American	African Amer. (Not Hispanic)	-29.71(*)	2.54	-33.80	-25.62
		Indian/Alaskan	Hispanic	-21.39(*)	2.54	-25.09	-17.69
			Multiracial	4.05	2.54	-0.53	8.62
			White (Not Hispanic)	18.30(*)	2.54	15.51	21.09
			Amer. Indian/Alaskan	-37.19(*)	2.31	-44.07	-30.32
			African Amer. (Not Hispanic)	-66.91(*)	2.31	-74.07	-59.74
		Asian	Hispanic	-58.58(*)	2.31	-65.57	-51.60
			Multiracial	-33.15(*)	2.31	-40.55	-25.75
			White (Not Hispanic)	-18.89(*)	2.31	-25.52	-12.27
			Amer. Indian/Alaskan	29.71(*)	2.50	25.68	33.74
		African American	Asian	66.91(*)	2.50	59.16	74.65
		(Not Hispanic)	Hispanic	8.32(*)	2.50	4.08	12.57
		(Not Hispanic)	Multiracial	33.76(*)	2.50	28.76	38.76
8	SS		White (Not Hispanic)	48.01(*)	2.50	44.52	51.51
O	33		Amer. Indian/Alaskan	21.39(*)	2.52	17.71	25.07
			Asian	58.58(*)	2.52	50.96	66.20
		Hispanic	African Amer. (Not Hispanic)	-8.32(*)	2.52	-12.60	-4.04
			Multiracial	25.43(*)	2.52	20.70	30.17
			White (Not Hispanic)	39.69(*)	2.52	36.61	42.77
			Amer. Indian/Alaskan	-4.05	2.47	-8.50	0.41
			Asian	33.15(*)	2.47	25.24	41.05
		Multiracial	African Amer. (Not Hispanic)	-33.76(*)	2.47	-38.70	-28.82
			Hispanic	-25.43(*)	2.47	-30.08	-20.79
			White (Not Hispanic)	14.26(*)	2.47	10.27	18.24
			Amer. Indian/Alaskan	-18.3(*)	2.57	-21.12	-15.48
			Asian	18.89(*)	2.57	11.54	26.24
		White (Not Hispanic)	African Amer. (Not Hispanic)	-48.01(*)	2.57	-51.60	-44.42
			Hispanic	-39.69(*)	2.57	-42.82	-36.56
(1) G1 10	11.00		Multiracial	-14.26(*)	2.57	-18.40	-10.11

^(*)Significant differences

Table 44. Science, Pair-Wise Dunnett's C Post-Hoc Comparison of Spring 2013 Scale Score Mean Differences by Ethnicity

	Dependent			Mean	Dunnett's	95% Confid	ence Interval
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	С	Lower Bound	Upper Bound
			Asian	26.28(*)	2.53	19.92	32.64
		American	African Amer. (Not Hispanic)	-37.37(*)	2.53	-40.81	-33.93
		Indian/Alaskan	Hispanic	-19.77(*)	2.53	-22.78	-16.76
			Multiracial	4.04(*)	2.53	0.18	7.89
			White (Not Hispanic)	18.31(*)	2.53	15.93	20.69
			Amer. Indian/Alaskan	-26.28(*)	2.31	-32.07	-20.49
			African Amer. (Not Hispanic)	-63.65(*)	2.31	-69.66	-57.63
		Asian	Hispanic	-46.05(*)	2.31	-51.87	-40.22
			Multiracial	-22.24(*)	2.31	-28.46	-16.02
			White (Not Hispanic)	-7.97(*)	2.31	-13.54	-2.40
			Amer. Indian/Alaskan	37.37(*)	2.50	33.98	40.76
		African American	Asian	63.65(*)	2.50	57.14	70.16
		(Not Hispanic)	Hispanic	17.60(*)	2.50	14.15	21.05
		(140t Hispanie)	Multiracial	41.40(*)	2.50	37.22	45.59
5	SS		White (Not Hispanic)	55.68(*)	2.50	52.75	58.61
3	55		Amer. Indian/Alaskan	19.77(*)	2.53	16.76	22.77
			Asian	46.05(*)	2.53	39.67	52.42
		Hispanic	African Amer. (Not Hispanic)	-17.60(*)	2.53	-21.09	-14.11
			Multiracial	23.80(*)	2.53	19.90	27.70
			White (Not Hispanic)	38.08(*)	2.53	35.62	40.54
			Amer. Indian/Alaskan	-4.04(*)	2.47	-7.79	-0.28
			Asian	22.24(*)	2.47	15.59	28.89
		Multiracial	African Amer. (Not Hispanic)	-41.40(*)	2.47	-45.54	-37.27
			Hispanic	-23.80(*)	2.47	-27.61	-20.00
			White (Not Hispanic)	14.27(*)	2.47	10.92	17.63
			Amer. Indian/Alaskan	-18.31(*)	2.56	-20.72	-15.90
			Asian	7.97(*)	2.56	1.78	14.16
		White (Not Hispanic)	African Amer. (Not Hispanic)	-55.68(*)	2.56	-58.69	-52.67
			Hispanic	-38.08(*)	2.56	-40.57	-35.58
			Multiracial	-14.27(*)	2.56	-17.76	-10.79

^(*)Significant differences

Table 44. Science, Pair-Wise Dunnett's C Post-Hoc Comparison of Spring 2013 Scale Score Mean Differences by Ethnicity

	Dependent			Mean	Dunnett's		ence Interval
Grade	Variable	(I) Ethnicity	(J) Ethnicity	Difference (J-I)	C	Lower Bound	Upper Bound
			Asian	30.50(*)	2.54	25.37	35.62
		American Indian/Alaskan	African Amer. (Not Hispanic)	-25.8(*)	2.54	-28.54	-23.06
			Hispanic	-15.89(*)	2.54	-18.38	-13.41
		mutan/Ataskan	Multiracial	3.79(*)	2.54	0.62	6.95
			White (Not Hispanic)	13.60(*)	2.54	11.71	15.49
			Amer. Indian/Alaskan	-30.50(*)	2.31	-35.17	-25.82
			African Amer. (Not Hispanic)	-56.30(*)	2.31	-61.15	-51.44
		Asian	Hispanic	-46.39(*)	2.31	-51.12	-41.65
			Multiracial	-26.71(*)	2.31	-31.77	-21.65
			White (Not Hispanic)	-16.90(*)	2.31	-21.40	-12.39
			Amer. Indian/Alaskan	25.80(*)	2.50	23.10	28.50
		African American (Not	Asian	56.30(*)	2.50	51.04	61.55
		Hispanic)	Hispanic	9.91(*)	2.50	7.08	12.74
		Trispanic)	Multiracial	29.59(*)	2.50	26.16	33.01
8	SS		White (Not Hispanic)	39.40(*)	2.50	37.06	41.74
0	33		Amer. Indian/Alaskan	15.89(*)	2.52	13.42	18.36
			Asian	46.39(*)	2.52	41.21	51.56
		Hispanic	African Amer. (Not Hispanic)	-9.91(*)	2.52	-12.76	-7.05
			Multiracial	19.68(*)	2.52	16.42	22.94
			White (Not Hispanic)	29.49(*)	2.52	27.43	31.55
			Amer. Indian/Alaskan	-3.79(*)	2.46	-6.86	-0.71
			Asian	26.71(*)	2.46	21.31	32.11
		Multiracial	African Amer. (Not Hispanic)	-29.59(*)	2.46	-32.96	-26.21
			Hispanic	-19.68(*)	2.46	-22.86	-16.49
			White (Not Hispanic)	9.81(*)	2.46	7.04	12.58
			Amer. Indian/Alaskan	-13.60(*)	2.57	-15.51	-11.69
			Asian	16.90(*)	2.57	11.90	21.89
		White (Not Hispanic)	African Amer. (Not Hispanic)	-39.40(*)	2.57	-41.80	-37.00
			Hispanic	-29.49(*)	2.57	-31.58	-27.40
			Multiracial	-9.81(*)	2.57	-12.70	-6.93

^(*)Significant differences

Table 45. Spring 2013, Mean Scale Score and Standard Deviations for State and Each Proficiency Level

		N	Total		Pa	SS
Content	Grade	Count	Mean	SD	Mean	SD
	3	46316	739.00	88.33	781.69	62.03
	4	45383	745.43	90.14	784.75	65.46
Mathamatica	5	44295	740.71	86.98	782.33	61.00
Mathematics	6	43222	737.09	78.86	773.36	54.68
	7	43146	732.30	80.70	772.10	54.63
	8	41377	732.09	83.25	775.66	57.78
	3	45683	741.22	86.35	781.55	57.37
	4	44704	729.59	77.54	768.70	51.34
D 45	5	43798	735.55	84.47	777.59	57.88
Reading	6	42971	731.18	77.53	772.72	53.76
	7	43368	729.88	67.56	760.02	49.14
	8	42341	750.16	82.06	781.85	59.93
Caianaa	5	44805	695.10	72.00	748.12	44.80
Science	8	44209	694.21	57.11	734.31	28.40

Note: Undetermined (invalid) students not included; Pass = Proficient + Advanced.

Table 45. Spring 2013, Mean Scale Score and Standard Deviations for State and Each Proficiency Level *(continued)*

		Unsatist	factory	Limi	ted	Profic	cient	Adva	nced
Content	Grade	Mean	SD	Mean	SD	Mean	SD	Mean	SD
	3	575.73	52.99	671.25	19.30	748.05	27.17	855.64	52.24
	4	586.55	53.98	671.70	15.74	749.80	30.07	865.67	52.32
Mathematics	5	587.72	53.88	673.82	17.10	746.54	25.97	848.78	50.83
Maniemancs	6	613.82	50.37	681.10	9.82	744.04	26.22	838.67	44.02
	7	623.96	56.12	687.81	6.08	746.96	28.88	848.01	42.50
	8	595.15	51.03	675.94	15.73	736.65	20.47	827.45	50.11
	3	587.84	58.50	676.18	15.02	772.73	45.21	929.27	32.60
	4	601.73	52.68	679.69	12.93	757.82	36.61	886.29	39.02
Reading	5	588.43	56.47	674.93	16.42	761.28	36.84	895.44	44.07
Reading	6	603.73	43.21	678.81	15.06	754.85	31.89	869.32	44.29
	7	627.21	44.42	684.01	7.71	744.44	28.71	851.49	44.23
	8	604.03	48.85	677.95	11.79	759.87	35.51	881.22	45.52
Science	5	596.87	48.61	672.17	14.49	724.68	17.34	800.10	43.25
Science	8	611.15	50.98	677.73	11.95	720.62	14.29	771.77	23.19

Note: Undetermined (invalid) students not included.

Table 46. Spring 2012 Proficiency Level Impact Data, (% rounded)

				, \			
		N			Limited		
Content	Grade	Count	Pass	Unsatisfactory	Knowledge	Proficient	Advanced
	3	45419	69.86	10.17	19.97	45.22	24.64
	4	44146	72.94	9.89	17.17	53.21	19.73
Mathematics	5	43641	70.16	10.45	19.39	42.48	27.68
Mamemanes	6	43415	70.76	15.58	13.67	50.28	20.48
	7	42540	69.74	17.69	12.57	51.36	18.38
	8	42076	67.99	11.22	20.79	42.34	25.65
	3	44742	71.93	11.42	16.65	68.80	3.13
	4	43366	63.34	15.15	21.51	58.90	4.44
Daadina	5	43073	67.67	10.56	21.77	56.19	11.48
Reading	6	43195	68.91	14.11	16.98	60.21	8.70
	7	42500	74.16	12.28	13.56	55.51	18.65
	8	42135	78.86	8.95	12.19	61.01	17.85
Caianas	5	44116	88.25	2.58	9.17	58.46	29.79
Science	8	43131	86.68	3.43	9.88	70.07	16.61

Note: Statistics re-calculated by CTB based on the 2012 GRT.

Table 47. Spring 2013 Proficiency Level Impact Data, (% rounded)

		N			Limited		
Content	Grade	Count	Pass	Unsatisfactory	Knowledge	Proficient	Advanced
	3	46316	69.63	9.58	20.79	47.86	21.77
	4	45383	73.05	10.39	16.56	51.01	22.03
Mathamatica	5	44295	70.17	10.75	19.08	45.60	24.56
Mathematics	6	43222	71.83	15.28	12.89	49.57	22.25
	7	43146	68.89	21.27	9.84	51.75	17.14
	8	41377	66.71	12.84	20.46	38.05	28.66
	3	45683	71.67	11.86	16.47	67.63	4.04
	4	44704	68.42	14.11	17.47	62.63	5.80
Dandina	5	43798	68.67	11.42	19.91	60.33	8.35
Reading	6	42971	66.08	12.90	21.01	55.77	10.31
	7	43368	71.68	15.16	13.16	61.24	10.44
	8	42341	77.10	10.68	12.22	63.13	13.97
g -:	5	44805	51.00	20.99	28.01	35.15	15.85
Science	8	44209	52.43	19.81	27.77	38.39	14.03

Note: 2013 Science cuts are new and different from 2012 cuts; Undetermined (invalid) students not included.

Table 48. Spring 2013, Mathematics State and Subgroup Proficiency Level Impact Data

		N		•	Limited		
Grade	Subgroup	Count	Pass	Unsatisfactory	Knowledge	Proficient	Advanced
	Whole State	46316	69.63	9.58	20.79	47.86	21.77
	Female	22881	68.10	9.89	22.00	47.73	20.37
	Male	23395	71.14	9.27	19.59	48.00	23.14
	Asian	950	81.58	5.16	13.26	43.47	38.11
	Black	4126	48.18	22.47	29.35	38.46	9.72
	Hispanic	7322	57.68	14.64	27.68	44.97	12.70
3	Indian American	6934	69.50	8.19	22.31	48.79	20.71
3	White	23794	76.48	6.34	17.18	50.05	26.44
	Multiracial	3190	70.41	9.75	19.84	49.66	20.75
	ELL	4856	49.36	19.32	31.32	40.94	8.42
	IEP	5425	51.85	20.52	27.63	39.61	12.24
	Section 504	291	60.48	13.06	26.46	44.33	16.15
	Low SES	28291	61.60	13.06	25.33	46.73	14.88
	Accommodated	4702	40.88	26.20	32.92	35.43	5.44
	Whole State	45383	73.05	10.39	16.56	51.01	22.03
	Female	22577	72.60	10.40	17.01	51.65	20.95
	Male	22768	73.50	10.37	16.14	50.37	23.13
	Asian	850	87.29	4.24	8.47	46.71	40.59
	Black	4056	54.09	22.58	23.32	43.66	10.43
	Hispanic	6882	63.09	16.27	20.63	48.63	14.46
4	Indian American	6901	71.79	10.09	18.13	53.27	18.52
4	White	23658	79.09	6.85	14.06	52.43	26.65
	Multiracial	3036	72.76	10.74	16.50	51.25	21.51
	ELL	3145	49.98	25.53	24.48	42.67	7.31
	IEP	5280	53.33	21.93	24.73	43.07	10.27
	Section 504	358	65.92	14.53	19.55	49.72	16.20
	Low SES	27413	65.65	14.03	20.32	50.86	14.79
	Accommodated	4314	43.35	28.37	28.28	38.57	4.78

Table 48. Spring 2013, Mathematics State and Subgroup Proficiency Level Impact Data (continued)

		N		Tronciency Zever	Limited	,	
Grade	Subgroup	Count	Pass	Unsatisfactory	Knowledge	Proficient	Advanced
	Whole State	44295	70.17	10.75	19.08	45.60	24.56
	Female	22105	70.25	10.42	19.33	45.89	24.35
	Male	22162	70.11	11.05	18.83	45.33	24.79
	Asian	857	83.90	4.20	11.90	32.91	50.99
	African American	4030	52.41	22.16	25.43	39.50	12.90
	Hispanic	6472	61.57	15.22	23.21	43.63	17.94
5	Indian American	7075	65.98	12.34	21.68	46.50	19.48
3	White	22950	76.52	7.23	16.24	47.38	29.14
	Multiracial	2911	69.91	10.82	19.27	45.96	23.94
	ELL	2570	42.37	27.55	30.08	33.15	9.22
	IEP	4904	46.39	25.16	28.45	36.34	10.05
	Section 504	372	60.75	15.86	23.39	43.55	17.20
	Low SES	26497	62.32	14.47	23.20	45.21	17.11
	Accommodated	4057	37.66	29.97	32.36	31.75	5.92
	Whole State	43222	71.83	15.28	12.89	49.57	22.25
	Female	21425	70.80	15.59	13.61	50.10	20.70
	Male	21791	72.85	14.96	12.18	49.07	23.78
	Asian	875	86.74	6.74	6.51	41.14	45.60
	African American	3754	52.08	29.75	18.17	42.59	9.48
	Hispanic	5999	62.23	22.00	15.77	47.86	14.37
6	Indian American	6964	69.49	16.76	13.76	51.77	17.72
Ü	White	22691	78.04	10.81	11.14	50.97	27.08
	Multiracial	2939	69.79	16.57	13.64	48.55	21.23
	ELL	1896	41.46	41.30	17.25	35.44	6.01
	IEP	4275	41.92	39.30	18.78	35.04	6.88
	Section 504	397	67.25	16.62	16.12	49.62	17.63
	Low SES	24785	63.37	20.74	15.89	48.94	14.42
	Accommodated	2900	35.66	45.93	18.41	31.66	4.00

Table 48. Spring 2013, Mathematics State and Subgroup Proficiency Level Impact Data (continued)

		N			Limited	,	
Grade	Subgroup	Count	Pass	Unsatisfactory	Knowledge	Proficient	Advanced
	Whole State	43146	68.89	21.27	9.84	51.75	17.14
	Female	21497	69.18	20.47	10.35	53.90	15.28
	Male	21641	68.62	22.07	9.32	49.62	18.99
	Asian	813	88.07	7.13	4.80	48.46	39.61
	African American	3868	49.12	38.24	12.64	42.71	6.41
	Hispanic	5695	58.12	29.41	12.47	48.69	9.43
7	Indian American	7099	67.32	22.21	10.47	53.80	13.52
,	White	22762	75.27	16.13	8.60	53.69	21.59
	Multiracial	2909	64.76	24.68	10.55	50.50	14.27
	ELL	1889	37.32	49.81	12.86	32.77	4.55
	IEP	3953	36.73	51.45	11.81	31.87	4.86
	Section 504	401	57.11	29.43	13.47	43.64	13.47
	Low SES	24091	60.03	28.30	11.68	49.97	10.05
	Accommodated	2644	31.32	56.05	12.63	28.21	3.10
	Whole State	41377	66.71	12.84	20.46	38.05	28.66
	Female	20755	67.21	12.46	20.32	39.04	28.17
	Male	20615	66.20	13.21	20.59	37.06	29.15
	Asian	820	87.20	4.39	8.41	30.61	56.59
	African American	3675	50.67	24.00	25.33	34.29	16.38
	Hispanic	5245	55.42	19.47	25.11	35.71	19.71
8	Indian American	6747	62.93	13.84	23.23	38.40	24.53
O	White	22184	72.71	9.30	17.99	39.48	33.23
	Multiracial	2706	64.34	13.90	21.77	37.32	27.01
	ELL	1785	32.77	37.59	29.64	24.82	7.96
	IEP	3258	33.12	37.54	29.34	24.31	8.81
	Section 504	382	59.16	18.59	22.25	36.91	22.25
	Low SES	22074	57.04	18.13	24.83	37.23	19.81
	Accommodated	2070	27.05	42.75	30.19	21.30	5.75

Table 49. Spring 2013, Reading State and Subgroup Proficiency Level Impact Data

	pring 2013, Redding b	N		•	Limited		
Grade	Subgroup	Count	Pass	Unsatisfactory	Knowledge	Proficient	Advanced
	Whole State	45683	71.67	11.86	16.47	67.63	4.04
	Female	22691	74.72	9.84	15.45	70.24	4.48
	Male	22967	68.69	13.85	17.46	65.08	3.61
	Asian	923	80.17	8.56	11.27	70.21	9.97
	African American	4061	55.45	23.02	21.52	53.80	1.65
	Hispanic	7177	57.61	19.88	22.50	56.03	1.59
3	Indian American	6846	70.83	11.71	17.46	67.84	2.99
3	White	23524	78.47	7.69	13.84	73.21	5.26
	Multiracial	3152	73.16	11.64	15.20	69.07	4.09
	ELL	4665	45.89	27.46	26.65	45.17	0.73
	IEP	4889	47.72	31.13	21.15	45.94	1.78
	Section 504	294	62.93	15.65	21.43	61.56	1.36
	Low SES	27847	63.76	16.13	20.11	61.58	2.18
	Accommodated	3620	32.57	42.85	24.59	32.18	0.39
	Whole State	44704	68.42	14.11	17.47	62.63	5.80
	Female	22405	71.52	11.88	16.60	65.01	6.50
	Male	22269	65.32	16.32	18.36	60.23	5.09
	Asian	832	77.16	9.25	13.58	65.38	11.78
	African American	3995	50.89	25.63	23.48	49.24	1.65
	Hispanic	6744	55.71	22.03	22.26	53.11	2.59
4	Indian American	6786	66.09	14.40	19.51	61.23	4.86
4	White	23377	75.34	10.00	14.66	67.78	7.56
	Multiracial	2970	69.29	13.64	17.07	64.07	5.22
	ELL	2950	36.03	37.97	26.00	35.46	0.58
	IEP	4695	40.49	37.06	22.45	38.23	2.26
	Section 504	361	62.33	15.79	21.88	57.89	4.43
	Low SES	26892	59.80	19.01	21.20	56.91	2.89
	Accommodated	3381	26.50	48.92	24.58	26.09	0.41

Table 49. Spring 2013, Reading State and Subgroup Proficiency Level Impact Data (continued)

		N		,	Limited	,	
Grade	Subgroup	Count	Pass	Unsatisfactory	Knowledge	Proficient	Advanced
	Whole State	43798	68.67	11.42	19.91	60.33	8.35
	Female	21983	71.87	9.50	18.63	62.43	9.45
	Male	21790	65.47	13.34	21.19	58.23	7.24
	Asian	839	77.00	8.94	14.06	59.12	17.88
	African American	3980	50.00	22.91	27.09	46.68	3.32
	Hispanic	6345	53.70	18.19	28.12	49.82	3.88
5	Indian American	6995	65.52	12.59	21.89	59.31	6.20
3	White	22743	76.70	7.28	16.02	65.95	10.75
	Multiracial	2896	69.30	11.22	19.48	60.77	8.53
	ELL	2391	26.98	38.85	34.17	25.89	1.09
	IEP	4463	38.49	34.62	26.89	35.76	2.73
	Section 504	371	59.57	16.17	24.26	53.10	6.47
	Low SES	26092	59.50	15.85	24.65	54.86	4.64
	Accommodated	3350	25.34	44.63	30.03	24.27	1.07
	Whole State	42971	66.08	12.90	21.01	55.77	10.31
	Female	21436	68.60	11.09	20.31	57.19	11.41
	Male	21530	63.59	14.70	21.71	54.36	9.22
	Asian	844	77.37	8.06	14.57	56.40	20.97
	African American	3754	48.69	24.27	27.04	44.59	4.10
	Hispanic	5881	51.93	20.29	27.78	46.59	5.34
6	Indian American	6989	63.69	14.25	22.06	55.60	8.08
U	White	22554	73.19	8.84	17.97	60.22	12.96
	Multiracial	2949	64.56	12.95	22.48	54.46	10.11
	ELL	1744	23.05	46.10	30.85	21.56	1.49
	IEP	4091	32.78	40.82	26.40	29.70	3.08
	Section 504	398	62.06	15.33	22.61	53.27	8.79
	Low SES	24669	56.33	17.86	25.81	50.41	5.92
	Accommodated	2392	23.41	49.41	27.17	21.74	1.67

Table 49. Spring 2013, Reading State and Subgroup Proficiency Level Impact Data (continued)

		N		•	Limited	,	
Grade	Subgroup	Count	Pass	Unsatisfactory	Knowledge	Proficient	Advanced
	Whole State	43368	71.68	15.16	13.16	61.24	10.44
	Female	21678	75.05	12.70	12.24	62.84	12.22
	Male	21687	68.31	17.62	14.07	59.65	8.66
	Asian	814	80.22	10.07	9.71	58.97	21.25
	African American	3957	53.70	29.24	17.06	50.09	3.61
	Hispanic	5668	58.36	24.93	16.71	53.18	5.19
7	Indian American	7140	70.87	14.85	14.29	61.83	9.03
/	White	22874	78.31	10.35	11.34	65.13	13.18
	Multiracial	2915	69.57	17.02	13.41	60.79	8.78
	ELL	1792	28.57	50.89	20.54	27.46	1.12
	IEP	3965	39.52	43.08	17.40	37.10	2.42
	Section 504	412	59.71	21.36	18.93	51.46	8.25
	Low SES	24278	63.50	20.56	15.94	57.23	6.26
	Accommodated	2229	30.51	51.59	17.90	29.34	1.17
	Whole State	42341	77.10	10.68	12.22	63.13	13.97
	Female	21238	80.07	8.79	11.14	63.44	16.64
	Male	21098	74.11	12.57	13.32	62.83	11.28
	Asian	810	84.69	8.52	6.79	58.02	26.67
	African American	3830	60.05	21.64	18.30	52.92	7.13
	Hispanic	5326	64.96	19.10	15.94	55.90	9.07
8	Indian American	6943	75.69	10.92	13.39	64.05	11.64
o	White	22671	82.93	6.83	10.24	66.27	16.66
	Multiracial	2761	77.51	10.90	11.59	64.61	12.89
	ELL	1705	35.54	42.82	21.64	33.78	1.76
	IEP	3459	42.79	37.87	19.34	40.30	2.49
	Section 504	391	74.17	12.79	13.04	64.45	9.72
	Low SES	22681	68.62	15.60	15.78	60.15	8.47
	Accommodated	1747	34.46	45.11	20.44	33.31	1.14

Table 50. Spring 2013, Science State and Subgroup Proficiency Level Impact Data

	bpring 2013, Berenee	N		j	Limited		
Grade	Subgroup	Count	Pass	Unsatisfactory	Knowledge	Proficient	Advanced
	Whole State	44805	51.00	20.99	28.01	35.15	15.85
	Female	22365	48.79	21.71	29.50	35.01	13.78
	Male	22409	53.22	20.27	26.51	35.29	17.93
	Asian	859	63.91	14.32	21.77	38.53	25.38
	African American	4132	27.13	40.92	31.95	21.81	5.32
	Hispanic	6546	35.96	31.12	32.92	27.45	8.51
5	Indian American	7154	48.04	21.90	30.05	34.76	13.28
3	White	23172	59.90	14.58	25.52	39.56	20.34
	Multiracial	2942	51.33	20.67	28.01	36.30	15.02
	ELL	2596	17.72	51.35	30.93	14.06	3.66
	IEP	5438	28.30	43.05	28.65	21.79	6.51
	Section 504	374	43.05	25.94	31.02	30.75	12.30
	Low SES	26904	40.93	27.94	31.13	30.82	10.11
-	Accommodated	4444	19.33	52.25	28.42	15.80	3.53
	Whole State	44209	52.43	19.81	27.77	38.39	14.03
	Female	21997	51.00	19.08	29.92	38.46	12.54
	Male	22171	53.86	20.51	25.62	38.33	15.53
	Asian	836	71.29	9.09	19.62	43.42	27.87
	African American	4124	30.29	37.49	32.23	25.00	5.29
	Hispanic	5712	36.99	30.81	32.20	30.02	6.97
8	Indian American	7239	48.67	20.06	31.28	38.32	10.35
O	White	23596	60.50	14.37	25.13	42.60	17.90
	Multiracial	2702	52.59	19.65	27.76	38.42	14.17
	ELL	2028	15.43	53.94	30.62	13.81	1.63
	IEP	4613	21.31	48.69	30.00	17.78	3.53
	Section 504	397	49.62	22.17	28.21	35.01	14.61
	Low SES	24011	40.98	26.89	32.13	32.82	8.15
	Accommodated	2807	15.71	55.75	28.54	13.82	1.89

 Table 51. Spring 2013 Operational Test Parameters Correlations

	1 0															
			a-p	oarameter				b-	paramete	er			c-parameter			
				Mean	SD				Mean	SD				Mean	SD	
Content	Grade	Corr	RMSD	Diff	Ratio	Rdiff	Corr	RMSD	Diff	Ratio	Rdiff	Corr	RMSD	Diff	Ratio	Rdiff
	3	0.91	0.002	0.001	1.100	0.00	0.99	10.877	4.840	0.976	-0.24	0.67	0.078	0.032	0.725	-0.69
tics	4	0.95	0.002	0.001	0.814	-0.66	0.96	17.446	8.523	1.024	-0.05	0.58	0.080	0.041	0.611	-0.79
mal	5	0.90	0.002	0.001	1.334	0.33	0.94	20.268	2.290	0.864	-0.54	0.74	0.095	0.023	0.711	-0.70
Mathematics	6	0.94	0.001	0.000	0.966	-0.27	0.94	24.213	3.009	0.758	-0.75	0.47	0.083	0.009	1.073	-0.46
\mathbb{X}	7	0.88	0.002	-0.001	1.100	-0.06	0.89	33.862	-3.538	0.985	-0.26	0.53	0.106	-0.019	0.786	-0.66
	8	0.89	0.002	-0.001	0.869	-0.50	0.86	22.618	-9.487	0.959	-0.34	0.78	0.104	-0.048	0.695	-0.72
	3	0.94	0.001	0.000	0.958	-0.29	0.96	18.015	1.837	0.894	-0.50	0.72	0.079	0.019	0.782	-0.63
50	4	0.95	0.001	0.000	0.878	-0.52	0.95	16.537	3.765	0.795	-0.70	-0.11	0.093	0.029	0.427	-0.93
ding	5	0.95	0.001	0.000	1.024	-0.09	0.94	19.291	2.608	0.979	-0.23	0.23	0.110	0.008	0.384	-0.93
Reading	6	0.94	0.001	0.000	1.006	-0.15	0.92	21.510	4.006	1.050	-0.08	0.55	0.088	0.027	0.873	-0.58
1	7	0.99	0.001	0.000	0.877	-0.71	0.93	20.147	8.534	0.971	-0.26	0.59	0.106	0.046	0.557	-0.83
	8	0.95	0.001	0.000	0.894	-0.47	0.92	23.288	8.487	0.828	-0.59	-0.22	0.103	0.038	0.782	-0.84

Table 52. Scale Score Statistics for Operational Test in Spring 2012 and Spring 2013

			Spr	ing 2012			Spring 2013					
Content	Grade	N-Count	Alpha	Mean	SD	SEM	N-Count	Alpha	Mean	SD	SEM	
	3	45419	0.90	741.04	88.37	2.61	46316	0.91	739.00	88.33	2.62	
	4	44146	0.90	745.79	87.78	2.66	45383	0.90	745.43	90.14	2.69	
Mathematics	5	43641	0.89	742.14	85.78	2.77	44295	0.89	740.71	86.98	2.81	
Mamemanes	6	43415	0.90	734.25	79.51	2.95	43221	0.90	737.09	78.86	2.94	
	7	42540	0.89	735.15	80.15	3.01	43146	0.89	732.30	80.70	3.02	
	8	42076	0.90	726.02	83.07	3.03	41377	0.90	732.09	83.25	3.00	
	3	44742	0.90	742.68	82.26	2.82	45683	0.90	741.22	86.35	2.81	
	4	43366	0.88	724.38	73.38	2.75	44704	0.89	729.59	77.54	2.85	
Daadina	5	43073	0.89	734.25	79.60	2.69	43798	0.90	735.55	84.47	2.64	
Reading	6	43195	0.89	730.75	78.68	2.85	42971	0.89	731.18	77.53	2.78	
	7	42500	0.87	738.85	70.35	2.70	43368	0.88	729.88	67.56	2.66	
	8	42135	0.86	757.77	81.81	2.73	42341	0.88	750.16	82.06	2.72	
Science	5					•	44805	0.86	695.10	72.00	2.84	
Science	8		•	•	•	•	44209	0.85	694.21	57.11	2.98	

Note: Spring 2012 statistics re-calculated by CTB based on the 2012 GRT; Spring 2013 Census Data. Suppressed items not included in data; Spring 2012 Science was not included to avoid scale confusion between Spring 2012 and Spring 2013.

Table 53. Spring 2013, Proficiency Levels Cut Scores and Scale Bounds

Mathematics 3 400 633 700 798 990 4 400 639 700 805 990 5 400 638 700 791 990 6 400 664 700 795 990 7 400 674 700 800 990 8 400 642 700 774 990								
			Cut 1	Cut 2	Cut 3			
Content	Grade	LOSS	Perf. Level 2	Perf. Level 3	Perf. Level 4	HOSS		
	3	400	633	700	798	990		
	4	400	639	700	805	990		
Mathamatica	5	400	638	700	791	990		
Mathematics	6	400	664	700	795	990		
	7	400	674	700	800	990		
	8	400	642	700	774	990		
	3	400	649	700	891	990		
	4	400	658	700	845	990		
D 1'	5	400	641	700	830	990		
Reading	6	400	647	700	828	990		
	7	400	668	700	802	990		
	8	400	655	700	833	990		
C -:	5	400	648	700	765	990		
Science	8	400	658	700	751	990		

Note: LOSS = Lowest Obtainable Scale Score; HOSS = Highest Obtainable Scale Score; Science Cuts are new and different from 2012

Table 54. Spring 2013, Proportion of Students Within Each Performance Level

		-		Limited		
Content	Grade	N-Count	Unsatisfactory	Knowledge	Proficient	Advanced
	3	46316	9.58	20.79	47.86	21.77
	4	45383	10.39	16.56	51.01	22.03
Mathematics	5	44295	10.75	19.08	45.60	24.56
Maulemanes	6	43222	15.28	12.89	49.57	22.25
	7	43146	21.27	9.84	51.75	17.14
	8	41377	12.84	20.46	38.05	7.86 21.77 1.01 22.03 5.60 24.56 9.57 22.25 1.75 17.14 8.05 28.66 7.63 4.04 2.63 5.80 9.33 8.35 5.77 10.31 1.24 10.44 3.13 13.97 5.15 15.85
	3	45683	11.86	16.47	67.63	4.04
	4	44704	14.11	17.47	62.63	5.80
Reading	5	43798	11.42	19.91	60.33	8.35
Reading	6	42971	12.90	21.01	55.77	10.31
	7	43368	15.16	13.16	61.24	10.44
	8	42341	10.68	12.22	63.13	13.97
Science	5	44805	20.99	28.01	35.15	15.85
Science	8	44209	19.81	27.77	38.39	14.03

Note: Census Data; Suppressed items are not included in data.

Table 55. Differences in Overall Pass Rate for Spring 2012 and Spring 2013

			%, rounded)	Differences in Pass Rates
Content	Grade	2012	2013	2013-2012
	3	69.86	69.63	-0.23
	4	72.94	73.05	0.11
Mathematics	5	70.16	70.17	0.01
Mainematics	6	70.76	71.83	1.07
	7	69.74	68.89	-0.85
	8	67.99	66.71	-1.28
	3	71.93	71.67	-0.26
	4	63.34	68.42	5.08
Reading	5	67.67	68.67	1.00
Reading	6	68.91	66.08	-2.83
	7	74.16	71.68	-2.48
	8	78.86	77.10	-1.76

Note: Spring 2013 Science Cut Scores are new and different than Spring 2012.

Table 56. Spring 2013, Summary of Range of P-Values and Item-Test Correlations Statistics for Operational and Field Test, by Item

Гуре

Type			Mean P - Values Mean Item-Test Correlations											
		Item	Ope	erational It	ems	Fie	eld Test Ite	ms	Оре	erational It	ems	Fie	eld Test Ite	ems
Content	Grade	Type	Low	Mean	High	Low	Mean	High	Low	Mean	High	Low	Mean	High
70	3	MC	0.38	0.76	0.93	0.09	0.62	0.96	0.25	0.44	0.60	0.03	0.31	0.57
tic	4	MC	0.51	0.76	0.93	0.22	0.59	0.96	0.26	0.42	0.57	0.06	0.32	0.51
ıma	5	MC	0.41	0.73	0.91	0.17	0.55	0.89	0.23	0.40	0.57	0.02	0.32	0.50
Mathematics	6	MC	0.36	0.66	0.89	0.09	0.51	0.91	0.20	0.41	0.58	0.03	0.30	0.48
$\widetilde{\mathbb{M}}$	7	MC	0.24	0.62	0.88	0.08	0.46	0.85	0.22	0.39	0.55	0.00	0.28	0.50
	8	MC	0.42	0.65	0.88	0.19	0.45	0.76	0.28	0.42	0.55	0.02	0.29	0.57
	3	CR				0.13	0.21	0.25				0.23	0.33	0.42
	3	MC	0.41	0.72	0.92	0.26	0.61	0.91	0.18	0.42	0.60	0.10	0.31	0.49
	4	CR				0.13	0.19	0.24				0.28	0.33	0.39
	4	MC	0.43	0.72	0.92	0.27	0.62	0.94	0.24	0.40	0.54	0.09	0.31	0.49
ad	5	CR				0.18	0.35	0.57				0.20	0.34	0.43
din	3	MC	0.54	0.77	0.96	0.34	0.65	0.92	0.25	0.42	0.55	0.09	0.33	0.48
Reading	6	CR				0.10	0.39	0.55				0.22	0.32	0.48
_	0	MC	0.43	0.73	0.96	0.27	0.64	0.96	0.27	0.40	0.52	0.08	0.31	0.49
	7	CR				0.15	0.30	0.47				0.21	0.31	0.47
	/	MC	0.51	0.77	0.97	0.10	0.60	0.95	0.17	0.40	0.55	0.01	0.28	0.47
	8	CR				0.22	0.39	0.56				0.28	0.33	0.41
	0	MC	0.47	0.76	0.97	0.38	0.66	0.94	0.24	0.39	0.50	0.01	0.26	0.44
Science	5	MC	0.49	0.68	0.97	0.20	0.55	0.95	0.11	0.37	0.50	0.03	0.26	0.44
Scie	8	MC	0.23	0.57	0.87	0.18	0.47	0.94	0.20	0.36	0.51	0.01	0.22	0.45
Writing	5	CR	0.51	0.55	0.59	0.39	0.53	0.62						
Wri	8	CR	0.55	0.56	0.56	0.51	0.57	0.60						

Table 57. Spring 2012 and Spring 2013 Test Reliability Data

-		Coefficie	ent Alpha
Content	Grade	2012	2013
	3	0.90	0.91
	4	0.90	0.90
Mathematics	5	0.89	0.89
Maniemancs	6	0.90	0.90
	7	0.89	0.89
	8	0.90	0.90
	3	0.90	0.90
	4	0.90 0.91 0.90 0.90 0.89 0.89 0.90 0.90 0.89 0.89 0.90 0.90 0.90 0.90 0.88 0.89 0.89 0.90 0.89 0.89 0.87 0.88 0.87 0.86	0.89
Danding	5	0.89	0.90
Reading	6	0.89	0.89
	7	0.87	0.88
	8	0.86	0.88
Science	5	0.87	0.86
Science	8	0.86	0.85

Note: Spring 2012 Data calculated from the 2012 GRT.

 Table 58. Mathematics, Raw Score to Scale Score Conversions & Standard Error of Measurement

Raw	Grade 3		Grade 4		Grade 5	
Score	Scale Score	SEM	Scale Score	SEM	Scale Score	SEM
0	400	165	400	172	400	185
1	400	165	400	172	400	185
2	400	165	400	172	400	185
3	400	165	400	172	400	185
4	400	165	400	172	400	185
5	400	165	400	172	400	185
6	400	165	400	172	400	185
7	400	165	400	172	400	185
8	400	165	400	172	400	185
9	400	165	400	172	400	185
10	400	165	400	172	400	185
11	442	124	400	172	400	185
12	479	87	433	139	427	159
13	504	65	473	99	474	111
14	522	53	501	75	505	81
15	538	45	523	62	527	64
16	551	40	541	52	546	54
17	563	36	556	46	561	47
18	574	34	570	41	575	42
19	584	32	582	37	587	39
20	593	30	592	34	598	36
21	602	28	602	32	609	33
22	611	27	612	30	618	31
23	619	26	620	28	627	30
24	627	26	629	27	636	28
25	635	25	637	26	644	28 27
26	642	23 24	644	25 25	652	26
27	649	24	652	23	660	26
28	657	23	659	23	668	25
29	664	22	666	23	675	23
30	671	22	673	23	682	24
31	677		679	22	690	23
32	684	21 21	686	22	690 697	23 23
33	691	20	693	21	704	23 23
34 35	697	20 20	700 707	21 21	711 718	23 23
	704 711	2 0 19	707	21	718 726	
36						23
37 38	718 725	20 20	721 728	22 22	733 741	23
						23
39	732	20	736	22	750	23
40	740	21	744	23	758 767	24
41	748	22	753 763	24	767	24
42	757	23	762 773	25	777	25 27
43	767	24	773	26	788	27
44	779 702	26	784	28	800	29
45	792	29	798	30	815	32
46	808	32	815	34	832	36
47	828	37	836	40	855	43
48	856	46	866	52	889	56
49	903	64	921	80	949	86
50	990	126	990	131	990	112

 Table 58. Mathematics, Raw Score to Scale Score Conversions & Standard Error of Measurement

Raw Score Scale Score SEM Scale Score SEM Scale Score SEM 0 400 213 400 227 400 208 1 400 213 400 227 400 208 3 400 213 400 227 400 208 4 400 213 400 227 400 208 5 400 213 400 227 400 208 6 400 213 400 227 400 208 6 400 213 400 227 400 208 8 400 213 400 227 400 208 8 400 213 400 227 400 208 10 467 146 400 227 400 208 11 513 100 473 153 508 99 12 54	Table 58.		thematics, Raw Score to Scale Score Conversions & Standard Error of Measuremen						
0 400 213 400 227 400 208 1 400 213 400 227 400 208 2 400 213 400 227 400 208 3 400 213 400 227 400 208 5 400 213 400 227 400 208 6 400 213 400 227 400 208 6 400 213 400 227 400 208 8 400 213 400 227 400 208 8 400 213 400 227 400 208 9 400 213 400 227 400 208 10 467 146 400 227 400 208 11 513 500 473 153 508 99 12 543 73									
1 400 213 400 227 400 208 2 400 213 400 227 400 208 3 400 213 400 227 400 208 4 400 213 400 227 400 208 6 400 213 400 227 400 208 6 400 213 400 227 400 208 8 400 213 400 227 400 208 9 400 213 400 227 400 208 9 400 213 400 227 400 208 10 467 146 400 227 400 208 11 513 100 473 153 50 99 12 543 73 521 106 537 71 13 556 58	Score	Scale Score	SEM	Scale Score	SEM	Scale Score	SEM		
2 400 213 400 227 400 208 3 400 213 400 227 400 208 4 400 213 400 227 400 208 5 400 213 400 227 400 208 6 400 213 400 227 400 208 7 400 213 400 227 400 208 8 400 213 400 227 400 208 9 400 213 400 227 400 208 10 467 146 400 227 400 208 11 513 100 473 153 508 99 12 543 73 521 106 537 71 13 556 58 551 75 558 56 14 583 49	0	400	213	400	227	400	208		
3 400 213 400 227 400 208 4 400 213 400 227 400 208 5 400 213 400 227 400 208 6 400 213 400 227 400 208 8 400 213 400 227 400 208 8 400 213 400 227 400 208 9 400 213 400 227 400 208 10 467 146 400 227 400 208 11 513 100 473 153 508 99 12 543 73 521 106 537 71 13 565 58 551 75 558 56 14 583 49 573 59 575 47 15 589 42 <t< td=""><td>1</td><td>400</td><td>213</td><td>400</td><td>227</td><td>400</td><td>208</td></t<>	1	400	213	400	227	400	208		
3 400 213 400 227 400 208 4 400 213 400 227 400 208 5 400 213 400 227 400 208 6 400 213 400 227 400 208 8 400 213 400 227 400 208 8 400 213 400 227 400 208 9 400 213 400 227 400 208 10 467 146 400 227 400 208 11 513 100 473 153 508 99 12 543 73 521 106 537 71 13 565 58 551 75 558 56 14 583 49 573 59 575 47 15 589 42 <t< td=""><td></td><td>400</td><td></td><td>400</td><td>227</td><td>400</td><td>208</td></t<>		400		400	227	400	208		
4 400 213 400 227 400 208 5 400 213 400 227 400 208 6 400 213 400 227 400 208 7 400 213 400 227 400 208 9 400 213 400 227 400 208 9 400 213 400 227 400 208 10 467 146 400 227 462 146 11 513 100 473 153 508 99 12 543 73 521 106 537 71 13 565 58 551 75 558 56 14 583 49 573 59 575 47 15 598 42 591 49 589 41 16 611 37	3	400	213	400	227	400	208		
5 400 213 400 227 400 208 6 400 213 400 227 400 208 7 400 213 400 227 400 208 8 400 213 400 227 400 208 10 467 146 400 227 462 146 11 513 100 473 153 508 99 12 543 73 521 106 537 71 13 565 58 551 75 558 56 14 583 49 573 59 575 47 15 598 42 591 49 589 41 16 611 37 605 42 602 37 17 622 34 618 37 613 34 18 632 31 629<		400	213	400	227	400	208		
6		400		400	227	400	208		
7 400 213 400 227 400 208 8 400 213 400 227 400 208 9 400 213 400 227 400 208 10 467 146 400 227 462 146 11 513 100 473 153 508 99 12 543 73 521 106 537 71 13 565 58 551 75 558 56 14 583 49 573 59 575 47 15 598 42 591 49 589 41 16 611 37 605 42 602 37 17 622 34 618 37 613 34 18 632 31 629 34 623 31 19 642 29 639 <td></td> <td>400</td> <td>213</td> <td>400</td> <td>227</td> <td>400</td> <td>208</td>		400	213	400	227	400	208		
9		400	213	400	227	400	208		
10 467 146 400 227 462 146 11 513 100 473 153 508 99 12 543 73 521 106 537 71 13 565 58 551 75 558 56 14 583 49 573 59 575 47 15 598 42 591 49 589 41 16 611 37 605 42 602 37 17 622 34 618 37 613 34 18 632 31 629 34 623 31 19 642 29 639 31 632 29 20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665	8	400	213	400	227	400	208		
11 513 100 473 153 508 99 12 543 73 521 106 537 71 13 565 58 551 75 5588 56 14 583 49 573 59 575 47 15 598 42 591 49 589 41 16 611 37 605 42 602 37 17 622 34 618 37 613 34 18 632 31 629 34 623 31 19 642 29 639 31 632 29 20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673	9	400	213	400	227	400	208		
12 543 73 521 106 537 71 13 565 58 551 75 558 56 14 583 49 573 59 575 47 15 598 42 591 49 589 41 16 611 37 605 42 602 37 17 622 34 618 37 613 34 18 632 31 629 34 623 31 19 642 29 639 31 632 29 20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673 26 664 24 4681 22 680 25	10	467	146	400	227	462	146		
13 565 58 551 75 558 56 14 583 49 573 59 575 47 15 598 42 591 49 589 41 16 611 37 605 42 602 37 17 622 34 618 37 613 34 18 632 31 629 34 623 31 19 642 29 639 31 632 29 20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673 26 664 24 24 681 22 688 24 678 23 26 694 21 695 <	11	513	100	473	153	508	99		
14 583 49 573 59 575 47 15 598 42 591 49 589 41 16 611 37 605 42 602 37 17 622 34 618 37 613 34 18 632 31 629 34 623 31 19 642 29 639 31 632 29 20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673 26 664 24 24 681 22 680 25 671 24 25 687 22 688 24 678 23 26 694 21 695 <	12	543	73	521	106	537	71		
14 583 49 573 59 575 47 15 598 42 591 49 589 41 16 611 37 605 42 602 37 17 622 34 618 37 613 34 18 632 31 629 34 623 31 19 642 29 639 31 632 29 20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673 26 664 24 24 681 22 680 25 671 24 25 687 22 688 24 678 23 26 694 21 695 <	13	565	58	551	75	558	56		
16 611 37 605 42 602 37 17 622 34 618 37 613 34 18 632 31 629 34 623 31 19 642 29 639 31 632 29 20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673 26 664 24 24 681 22 680 25 671 24 25 687 22 688 24 678 23 26 694 21 792 23 691 22 27 700 21 702 23 698 21 29 713 20 716 <	14		49	573	59	575	47		
17 622 34 618 37 613 34 18 632 31 629 34 623 31 19 642 29 639 31 632 29 20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673 26 664 24 24 681 22 680 25 671 24 25 687 22 688 24 678 23 26 694 21 695 24 685 22 27 700 21 702 23 691 22 28 707 20 709 23 698 21 29 713 20 716 <	15		42	591	49		41		
17 622 34 618 37 613 34 18 632 31 629 34 623 31 19 642 29 639 31 632 29 20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673 26 664 24 24 681 22 680 25 671 24 25 687 22 688 24 678 23 26 694 21 695 24 685 22 27 700 21 702 23 691 22 28 707 20 709 23 698 21 29 713 20 716 <	16	611	37	605	42	602	37		
18 632 31 629 34 623 31 19 642 29 639 31 632 29 20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673 26 664 24 24 681 22 680 25 671 24 25 687 22 688 24 678 23 26 694 21 695 24 685 22 27 700 21 702 23 691 22 28 707 20 709 23 698 21 29 713 20 716 22 704 21 30 719 20 723 <			34	618	37	613	34		
19 642 29 639 31 632 29 20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673 26 664 24 24 681 22 680 25 671 24 25 687 22 688 24 678 23 26 694 21 695 24 685 22 27 700 21 702 23 691 22 28 707 20 709 23 698 21 29 713 20 716 22 704 21 30 719 20 723 22 716 20 31 725 19 730 22 716 20 32 731 19 744 22 <td< td=""><td>18</td><td>632</td><td>31</td><td>629</td><td>34</td><td></td><td>31</td></td<>	18	632	31	629	34		31		
20 651 27 648 29 641 28 21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673 26 664 24 24 681 22 680 25 671 24 25 687 22 688 24 678 23 26 694 21 695 24 685 22 27 700 21 702 23 691 22 28 707 20 709 23 698 21 29 713 20 716 22 704 21 30 719 20 723 22 710 21 31 725 19 730 22 716 20 32 731 19 744 <		642	29	639	31	632	29		
21 659 26 657 28 649 26 22 666 24 665 27 657 25 23 674 23 673 26 664 24 24 681 22 680 25 671 24 25 687 22 688 24 678 23 26 694 21 695 24 685 22 27 700 21 702 23 691 22 28 707 20 709 23 698 21 29 713 20 716 22 704 21 30 719 20 723 22 710 21 31 725 19 730 22 716 20 32 731 19 744 22 729 20 33 737 19 744 <	20		27	648	29	641	28		
22 666 24 665 27 657 25 23 674 23 673 26 664 24 24 681 22 680 25 671 24 25 687 22 688 24 678 23 26 694 21 695 24 685 22 27 700 21 702 23 691 22 28 707 20 709 23 698 21 29 713 20 716 22 704 21 30 719 20 723 22 710 21 31 725 19 730 22 716 20 32 731 19 744 22 723 20 33 737 19 744 22 723 20 34 744 19 752 <	21	659	26		28	649	26		
24 681 22 680 25 671 24 25 687 22 688 24 678 23 26 694 21 695 24 685 22 27 700 21 702 23 691 22 28 707 20 709 23 698 21 29 713 20 716 22 704 21 30 719 20 723 22 710 21 31 725 19 730 22 716 20 32 731 19 737 22 723 20 34 744 19 752 22 723 20 34 744 19 752 22 735 20 35 750 20 759 22 742 20 36 757 20 766 <		666	24	665	27	657	25		
25 687 22 688 24 678 23 26 694 21 695 24 685 22 27 700 21 702 23 691 22 28 707 20 709 23 698 21 29 713 20 716 22 704 21 30 719 20 723 22 710 21 31 725 19 730 22 716 20 32 731 19 737 22 723 20 33 737 19 744 22 729 20 34 744 19 752 22 735 20 35 750 20 759 22 742 20 36 757 20 766 22 748 20 37 764 20 774 <	23	674	23	673	26	664	24		
26 694 21 695 24 685 22 27 700 21 702 23 691 22 28 707 20 709 23 698 21 29 713 20 716 22 704 21 30 719 20 723 22 710 21 31 725 19 730 22 716 20 32 731 19 737 22 723 20 33 737 19 744 22 729 20 34 744 19 752 22 735 20 35 750 20 759 22 742 20 36 757 20 766 22 748 20 37 764 20 774 22 755 21 38 771 21 782 <	24	681	22	680	25	671	24		
27 700 21 702 23 691 22 28 707 20 709 23 698 21 29 713 20 716 22 704 21 30 719 20 723 22 710 21 31 725 19 730 22 716 20 32 731 19 737 22 723 20 33 737 19 744 22 729 20 34 744 19 752 22 735 20 35 750 20 759 22 742 20 36 757 20 766 22 748 20 37 764 20 774 22 755 21 38 771 21 782 22 762 21 39 779 21 790 <			22		24		23		
28 707 20 709 23 698 21 29 713 20 716 22 704 21 30 719 20 723 22 710 21 31 725 19 730 22 716 20 32 731 19 744 22 729 20 34 744 19 752 22 735 20 34 744 19 752 22 742 20 36 757 20 756 22 748 20 37 764 20 774 22 755 21 38 771 21 782 22 762 21 39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 <	26	694	21	695	24	685	22		
29 713 20 716 22 704 21 30 719 20 723 22 710 21 31 725 19 730 22 716 20 32 731 19 744 22 729 20 34 744 19 752 22 735 20 35 750 20 759 22 742 20 36 757 20 766 22 748 20 37 764 20 774 22 755 21 38 771 21 782 22 762 21 39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 <td< td=""><td>27</td><td>700</td><td>21</td><td>702</td><td>23</td><td>691</td><td>22</td></td<>	27	700	21	702	23	691	22		
30 719 20 723 22 710 21 31 725 19 730 22 716 20 32 731 19 737 22 723 20 33 737 19 744 22 729 20 34 744 19 752 22 735 20 35 750 20 759 22 742 20 36 757 20 766 22 748 20 37 764 20 774 22 755 21 38 771 21 782 22 762 21 39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25	28	707	20	709	23	698	21		
31 725 19 730 22 716 20 32 731 19 737 22 723 20 33 737 19 744 22 729 20 34 744 19 752 22 735 20 35 750 20 759 22 742 20 36 757 20 766 22 748 20 37 764 20 774 22 755 21 38 771 21 782 22 762 21 39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26	29	713	20	716	22	704	21		
32 731 19 737 22 723 20 33 737 19 744 22 729 20 34 744 19 752 22 735 20 35 750 20 759 22 742 20 36 757 20 766 22 748 20 37 764 20 774 22 755 21 38 771 21 782 22 762 21 39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 <	30	719	20	723	22	710	21		
33 737 19 744 22 729 20 34 744 19 752 22 735 20 35 750 20 759 22 742 20 36 757 20 766 22 748 20 37 764 20 774 22 755 21 38 771 21 782 22 762 21 39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 <td>31</td> <td>725</td> <td>19</td> <td>730</td> <td>22</td> <td>716</td> <td>20</td>	31	725	19	730	22	716	20		
34 744 19 752 22 735 20 35 750 20 759 22 742 20 36 757 20 766 22 748 20 37 764 20 774 22 755 21 38 771 21 782 22 762 21 39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 75 <td>32</td> <td>731</td> <td>19</td> <td>737</td> <td>22</td> <td>723</td> <td>20</td>	32	731	19	737	22	723	20		
35 750 20 759 22 742 20 36 757 20 766 22 748 20 37 764 20 774 22 755 21 38 771 21 782 22 762 21 39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887	33	737	19	744	22	729	20		
36 757 20 766 22 748 20 37 764 20 774 22 755 21 38 771 21 782 22 762 21 39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 <	34	744	19	752	22	735	20		
37 764 20 774 22 755 21 38 771 21 782 22 762 21 39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 <	35	750	20	759	22	742	20		
38 771 21 782 22 762 21 39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 75 944 70	36	757	20	766	22	748	20		
39 779 21 790 22 769 21 40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 75 944 70	37	764	20	774	22	755	21		
40 787 22 798 22 777 22 41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 75 944 70	38	771	21	782	22	762	21		
41 796 23 807 23 786 23 42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 75 944 70	39			790		769	21		
42 806 24 817 24 795 24 43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 75 944 70	40	787		798			22		
43 817 26 827 25 805 25 44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 75 944 70									
44 830 28 838 26 816 27 45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 75 944 70							24		
45 845 32 852 29 830 30 46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 75 944 70									
46 865 37 867 32 846 33 47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 75 944 70									
47 892 45 887 38 866 39 48 939 65 916 48 895 48 49 990 98 968 75 944 70									
48 939 65 916 48 895 48 49 990 98 968 75 944 70									
49 990 98 968 75 944 70									
50 990 90 990 98		990	98						
	50			990	90	990	98		

Table 59. Reading, Raw Score to Scale Score Conversions & Standard Error of Measurement

Table 59. Reading, Raw Score to Scale Score Conversions & Standard Error of Measurement								
Raw	Grade	3	Grade 4	4	Grade :	5		
Score	Scale Score	SEM	Scale Score	SEM	Scale Score	SEM		
0	400	200	400	182	400	182		
1	400	200	400	182	400	182		
2	400	200	400	182	400	182		
3	400	200	400	182	400	182		
4	400	200	400	182	400	182		
5	400	200	400	182	400	182		
6	400	200	400	182	400	182		
7	400	200	400	182	400	182		
8	400	200	400	182	400	182		
9	400	200	400	182	400	182		
10	400	200	440	142	400	182		
11	450	150	485	97	400	182		
12	498	102	513	69	443	139		
13	527	73	533	55	487	95		
14	548	57	549	45	513	69		
15	564	47	562	39	532	54		
16	578	41	574	35	548	45		
17	590	36	584	32	560	39		
18	601	33	593	30	571	34		
19	610	30	602	28	581	31		
20	619	28	610	26	590	29		
21	627	27	618	25	598	27		
22	635	26	625	24	606	25		
23	643	25	632	23	613	24		
24	650	24	638	23	620	23		
25	657	23	645	22	626	22		
26	663	23	651	22	633	21		
27	670	22	658	22	639	21		
28	677	22	664	21	645	21		
29	683	22	671	21	651	20		
30	690	22	677	21	658	20		
31	696	22	683	21	664	20		
32	703	22	690	21	670	21		
33	710	22	697	21	676	21		
34	717	22	703	22	683	21		
35	724	22	710	22	690	21		
36	732	23	718	22	697	22		
37	740	23	725	23	705	22		
38	748	24	733	23	712	23		
39	757	24	742 751	24	721 730	24		
40	766 776	25 26	751 760	25 26	730 739	24		
41 42	787	20 27	771		739 749	25 27		
42	787 799	27 29	783	28 30	749 761	28		
43 44	812	31	763 797	30	761 774	30		
44	828	33	813	32 35	774 788	32		
43 46	846	33 37	832	33 39	806	32 36		
40 47	870	43	856	45	828	42		
48	903	54	890	43 57	860	53		
49	961	79	951	86	915	80		
50	990	96	990	111	990	136		
30	270	70	770	111	770	130		

Table 59. Reading, Raw Score to Scale Score Conversions & Standard Error of Measurement

Table 59. Reading, Raw Score to Scale Score Conversions & Standard Error of Measurement								
Raw	Grade	6	Grade '	7	Grade			
Score	Scale Score	SEM	Scale Score	SEM	Scale Score	SEM		
0	400	165	400	192	400	159		
1	400	165	400	192	400	159		
2	400	165	400	192	400	159		
3	400	165	400	192	400	159		
4	400	165	400	192	400	159		
5	400	165	400	192	400	159		
6	400	165	400	192	400	159		
7	400	165	400	192	400	159		
8	400	165	400	192	400	159		
9	436	129	400	192	400	159		
10	478	87	400	192	447	112		
11	504	63	480	112	480	78		
12	523	50	515	77	504	61		
13	538	42	537	55	522	50		
14	551	37	553	43	537	43		
15	562	33	565	36	551	39		
16	572	31	576	31	562	35		
17	581	28	585	28	573	32		
18	590	27	593	26	582	30		
19	598	26	601	24	591	29		
20	605	24	608	23	600	28		
21	613	24	614	22	608	26		
22	619	23	621	21	615	26		
23	626	22	627	20	623	25		
24	633	22	633	20	630	24		
25	639	22	639	19	637	24		
26	646	21	644	19	644	24		
27	652	21	650	18	651	23		
28	659	21	656	18	658	23		
29	665	21	661	18	665	23		
30	672	21	666	18	672	23		
31	678	21	672	17	679	23		
32	685	22	677	17	686	23		
33	692	22	683	18	693	23		
34	699	22	688	18	701	24		
35	706	22	694	18	709	24		
36	714	23	700	18	717	24		
37	722	23	707	19	725	25		
38	730	24	713	19	734	26		
39	739	25	720	20	743	27		
40	748	26	728	21	753	28		
41	758	27	736	22	764	29		
42	769	28	745	23	775	30		
43	782	30	755	25	788	33		
44	796	33	766	27	803	35		
45	813	37	780	30	821	39		
46	833	42	797	34	842	44		
47	860	50	818	40	870	52		
48	899	64	849	50	909	65		
49	966	94	902	74	977	97		
50	990	107	990	142	990	104		

Table 60. Science, Raw Score to Scale Score Conversions & Standard Error of Measurement

			Grada 8			
Raw	Grade:		Grade 8			
Score	Scale Score	SEM	Scale Score	SEM		
0	400	230	400	237		
1	400	230	400	237		
2	400	230	400	237		
3	400	230	400	237		
4	400	230	400	237		
5	400	230	400	237		
6	400	230	400	237		
7	400	230	400	237		
8	400	230	400	237		
9	400	230	455	182		
10	470	160	525	112		
11	528	102	560	77		
12	559	72	583	58		
13	580	55	601	47		
14	596	45	615	40		
15	610	39	628	35		
16	622	35	639	32		
17	632	32	648	29		
18	642	30	657	27		
19	651	28	666	25		
20	660	26	674	24		
21	668	25	681	23		
22	675	24	688	22		
23	683	23	695	21		
24	690	22	701	20		
25	697	22	708	20		
26	704	21	714	20		
27	710	21	721	19		
28	717	20	727	19		
29	724	20	733	19		
30	730	20	740	19		
31	737	20	746	19		
32	744	20	753	19		
33	751	20	760	19		
34	758	20	767	20		
35	766	21	774	20		
36	774	22	782	21		
37	782	23	791	22		
38	792	24	800	23		
39	803	26	811	25		
40	816	29	824	27		
41	832	33	839	31		
42	853	40	859	37		
43	884	54	888	49		
44	944	90	940	76		
45	990	130	990	112		
N CEM	C4 1 1 E CM		OLD C. 1. C	1		

 Table 61. Spring 2013, Total Group Factor Analysis Results: Eigenvalues

-	1		-	•	
		KMO	Initial	Eigenvalue	Ratio 1st to 2nd
Content	Grade	Statistic	Total	% Variance	Eigenvalue
	3	0.97	12.46	86%	7.88
	4	0.97	10.65	92%	12.90
Mathematics	5	0.97	9.26	97%	14.43
Maniemanes	6	0.97	10.21	97%	13.82
	7	0.96	9.15	90%	8.57
	8	0.97	10.30	92%	11.92
	3	0.97	10.92	91%	7.86
	4	0.97	9.11	99%	11.73
Reading	5	0.97	10.84	96%	10.79
Reading	6	0.97	9.00	101%	14.21
	7	0.97	9.26	100%	11.44
	8	0.97	8.14	103%	15.99
Science	5	0.96	6.66	104%	14.35
Science	8	0.96	6.28	106%	12.39

Note: KMO = Kaiser's Measure of Sampling Adequacy

 Table 62. Spring 2013, Mathematics Subgroup Factor Analysis Results: Eigenvalues

		KMO	Initial	Eigenvalue	Ratio 1st to 2nd
Grade	Subgroup	Statistic	Total	% Variance	Eigenvalue
	Total Accommodated	0.95	11.00	81%	7.03
3	ELL	0.95	11.63	81%	7.05
3	Free Lunch	0.96	12.04	85%	7.52
	IEP	0.97	13.38	85%	8.38
	Total Accommodated	0.95	9.10	86%	8.02
4	ELL	0.96	10.66	87%	11.09
7	Free Lunch	0.96	10.10	91%	12.13
	IEP	0.96	10.76	88%	9.25
	Total Accommodated	0.94	7.67	88%	9.06
5	ELL	0.94	8.75	86%	10.51
3	Free Lunch	0.96	8.64	96%	13.17
	IEP	0.96	8.98	91%	10.23
	Total Accommodated	0.94	7.54	88%	9.05
6	ELL	0.94	8.87	86%	9.41
U	Free Lunch	0.97	9.19	96%	11.92
	IEP	0.96	8.90	92%	11.08
	Total Accommodated	0.92	6.77	84%	7.09
7	ELL	0.91	7.26	79%	7.00
,	Free Lunch	0.95	7.96	90%	7.90
	IEP	0.94	7.61	89%	8.03
	Total Accommodated	0.92	7.10	82%	7.14
8	ELL	0.93	8.10	82%	9.39
Ü	Free Lunch	0.96	9.41	92%	11.37
	IEP	0.95	8.38	88%	8.95

Note: KMO = Kaiser's Measure of Sampling Adequacy; ELL = English Language Learners; IEP = Individualized Education Program.

 Table 63. Spring 2013, Reading Subgroup Factor Analysis Results: Eigenvalues

		KMO	Initial	Eigenvalue	Ratio 1st to 2nd
Grade	Subgroup	Statistic	Total	% Variance	Eigenvalue
	Total Accommodated	0.96	9.95	90%	11.90
3	ELL	0.96	9.47	87%	7.88
3	Free Lunch	0.97	10.47	91%	8.18
	IEP	0.97	13.12	92%	14.33
	Total Accommodated	0.96	8.84	93%	12.75
4	ELL	0.96	8.74	93%	11.52
4	Free Lunch	0.97	8.83	99%	11.47
	IEP	0.97	11.24	95%	14.08
	Total Accommodated	0.96	10.25	91%	13.32
5	ELL	0.95	9.65	89%	10.28
3	Free Lunch	0.97	10.57	95%	11.12
	IEP	0.97	12.79	93%	14.87
	Total Accommodated	0.95	9.20	90%	13.49
6	ELL	0.95	8.64	88%	11.31
U	Free Lunch	0.97	8.72	100%	14.23
	IEP	0.97	10.56	95%	15.00
	Total Accommodated	0.96	10.18	89%	11.14
7	ELL	0.94	8.63	84%	7.91
,	Free Lunch	0.97	9.13	99%	11.27
	IEP	0.97	10.86	94%	12.18
	Total Accommodated	0.95	8.95	88%	12.59
8	ELL	0.95	8.51	89%	13.21
O	Free Lunch	0.97	8.21	102%	16.42
	IEP CONTRACTOR	0.97	9.55	95%	16.44

Note: KMO = Kaiser's Measure of Sampling Adequacy; ELL = English Language Learners; IEP = Individualized Education Program.

 Table 64. Spring 2013, Science Subgroup Factor Analysis Results: Eigenvalues

		KMO	Initial Eigenvalue		Ratio 1st to 2nd
Grade	Subgroup	Statistic	Total	% Variance	Eigenvalue
	Total Accommodated	0.93	5.48	98%	10.79
5	ELL	0.91	5.26	91%	10.04
3	Free Lunch	0.96	6.18	104%	13.34
	IEP	0.95	6.80	100%	12.69
	Total Accommodated	0.87	3.88	91%	8.38
8	ELL	0.85	3.76	85%	6.42
8	Free Lunch	0.95	5.54	106%	11.39
	IEP	0.92	4.80	97%	9.34

Note: KMO = Kaiser's Measure of Sampling Adequacy; ELL = English Language Learners; IEP = Individualized Education Program.

 Table 65. Spring 2013, Proficiency Level Cut Scores and Standard Error of Measurement (SEM)

		,	J					
		Cut 1		C	Cut 2		Cut 3	
Content	Grade	Cut Score	SEM at Cut	Cut Score	SEM at Cut	Cut Score	SEM at Cut	
	3	633	25	700	20	798	32	
	4	639	25	700	21	805	34	
Mathematics	5	638	27	700	23	791	29	
Mathematics	6	664	24	700	21	795	23	
	7	674	25	700	23	800	23	
	8	642	26	700	21	774	22	
	3	649	24	700	22	891	54	
	4	658	22	700	22	845	45	
Reading	5	641	21	700	22	830	53	
Reading	6	647	21	700	22	828	42	
	7	668	17	700	18	802	40	
	8	655	23	700	24	833	44	
Science	5	648	28	700	21	765	21	
Science	8	658	25	700	20	751	19	

Note: SEM at or closest above the cut scores.

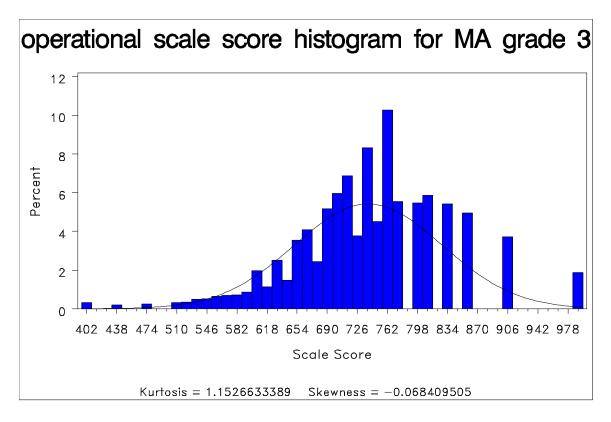
Table 66. Estimates of Accuracy and Consistency of Performance Classification

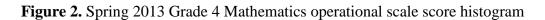
Content	Grade	Accuracy	Consistency	False Positives	False Negatives	Kappa
	3	0.79	0.71	0.10	0.11	0.59
	4	0.78	0.70	0.11	0.11	0.57
Mathamatica	5	0.76	0.67	0.11	0.12	0.54
Mathematics	6	0.77	0.69	0.11	0.12	0.56
	7	0.76	0.68	0.12	0.12	0.54
	8	0.76	0.68	0.11	0.12	0.55
	3	0.84	0.78	0.08	0.09	0.58
	4	0.80	0.73	0.10	0.10	0.55
Dandina	5	0.79	0.72	0.10	0.11	0.56
Reading	6	0.79	0.71	0.10	0.11	0.54
	7	0.77	0.70	0.11	0.12	0.53
	8	0.78	0.71	0.10	0.11	0.53
Sajanas	5	0.70	0.60	0.15	0.15	0.47
Science	8	0.70	0.60	0.15	0.15	0.46

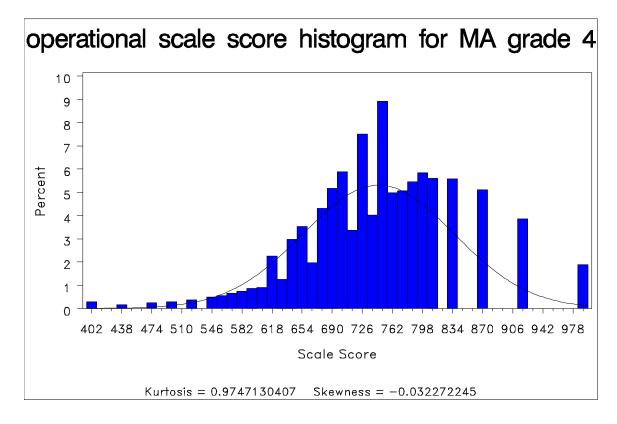
Table 67. Accuracy & Consistency Estimates by Cut Score

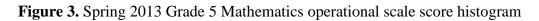
			Accuracy			Consistency	
Content	Grade	U/L+P+A	U+L/P+A	U+L+P/A	U/L+P+A	U+L/P+A	U+L+P/A
	3	0.95	0.92	0.92	0.93	0.88	0.89
	4	0.95	0.91	0.92	0.93	0.88	0.88
Mathematics	5	0.95	0.91	0.91	0.92	0.87	0.87
Maulematics	6	0.93	0.91	0.92	0.91	0.87	0.89
	7	0.92	0.90	0.92	0.88	0.86	0.89
	8	0.94	0.91	0.91	0.92	0.87	0.87
	3	0.94	0.91	0.98	0.92	0.88	0.97
	4	0.93	0.90	0.96	0.90	0.86	0.95
Reading	5	0.94	0.91	0.94	0.92	0.87	0.92
Reading	6	0.94	0.90	0.95	0.91	0.86	0.93
	7	0.93	0.90	0.94	0.90	0.86	0.91
	8	0.94	0.91	0.93	0.92	0.87	0.90
Science	5	0.90	0.88	0.92	0.86	0.83	0.89
Science	8	0.90	0.87	0.92	0.85	0.82	0.89

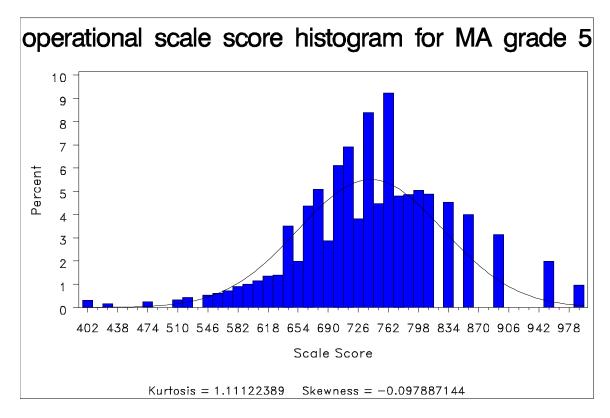
Note: U = Unsatisfactory; L = Limited Knowledge; P = Proficient; A = Advanced.

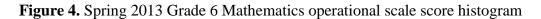

Table 68. Accuracy & Consistency Estimates by Cut Score: False Positive and False Negative Rates

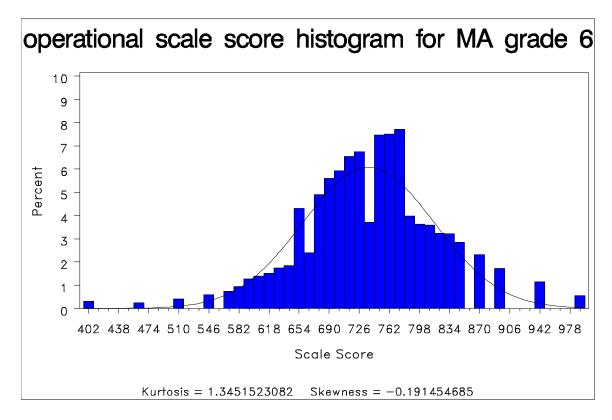

		U/L+	-P+A	U+L	/P+A	U+L	+P/A
		False	False	False	False	False	False
Content	Grade	Positive	Negative	Positive	Negative	Positive	Negative
	3	0.02	0.03	0.04	0.05	0.04	0.03
	4	0.02	0.03	0.04	0.05	0.05	0.04
Mathematics	5	0.02	0.03	0.04	0.05	0.05	0.04
Maulemanes	6	0.03	0.04	0.04	0.05	0.05	0.03
	7	0.04	0.05	0.05	0.05	0.05	0.03
	8	0.02	0.03	0.04	0.05	0.05	0.04
	3	0.02	0.03	0.04	0.05	0.01	0.01
	4	0.03	0.04	0.05	0.05	0.02	0.01
Reading	5	0.02	0.03	0.04	0.05	0.04	0.02
Reading	6	0.02	0.04	0.05	0.05	0.03	0.02
	7	0.03	0.04	0.04	0.05	0.04	0.02
	8	0.02	0.04	0.04	0.05	0.04	0.03
Science	5	0.04	0.06	0.06	0.06	0.05	0.03
Science	8	0.04	0.06	0.06	0.06	0.05	0.03


Note: U = Unsatisfactory; L = Limited Knowledge; P = Proficient; A = Advanced.

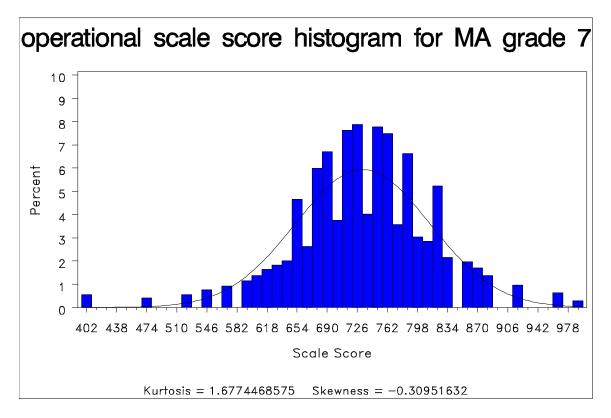

Figures

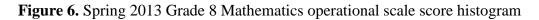

Figure 1. Spring 2013 Grade 3 Mathematics operational scale score histogram

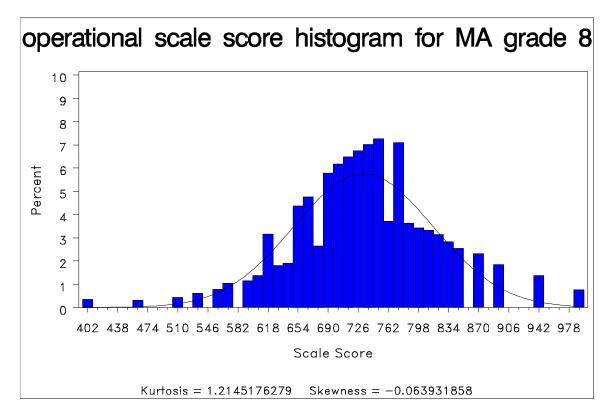


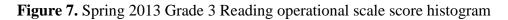


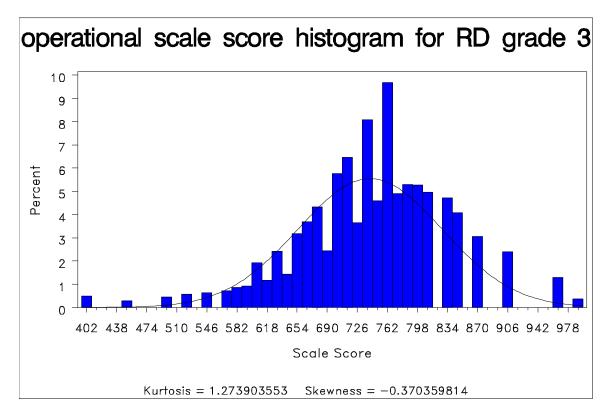
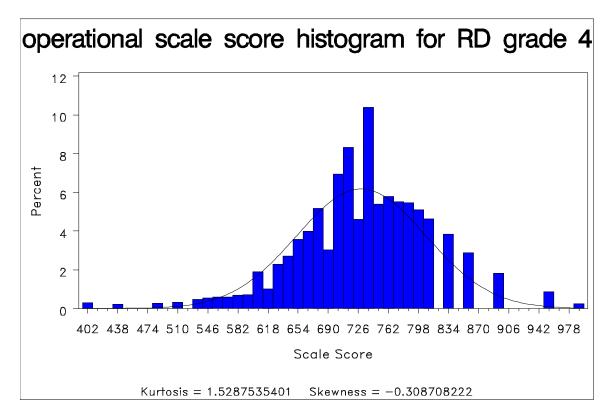
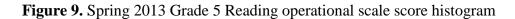
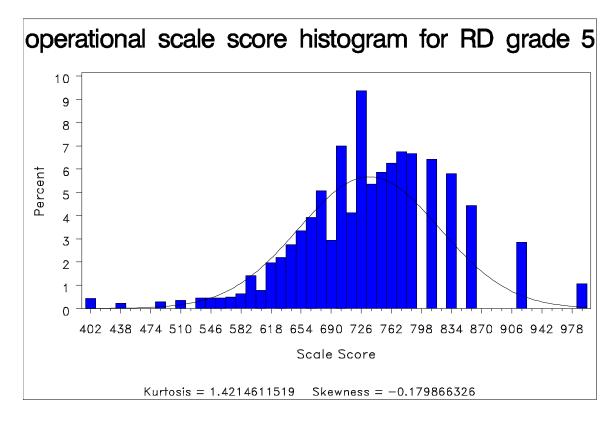
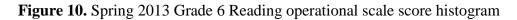


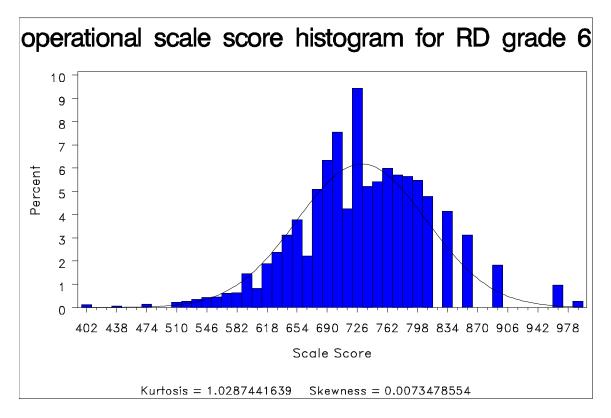


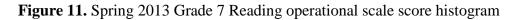


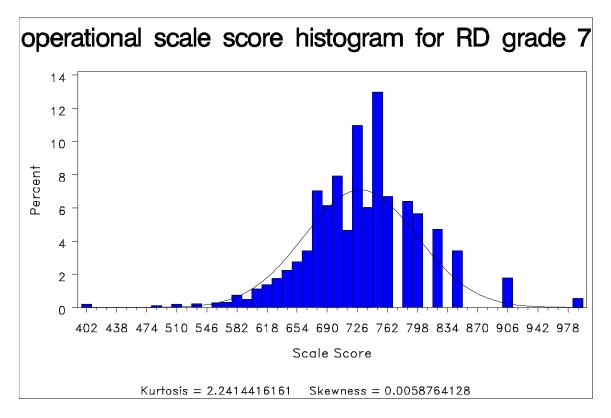
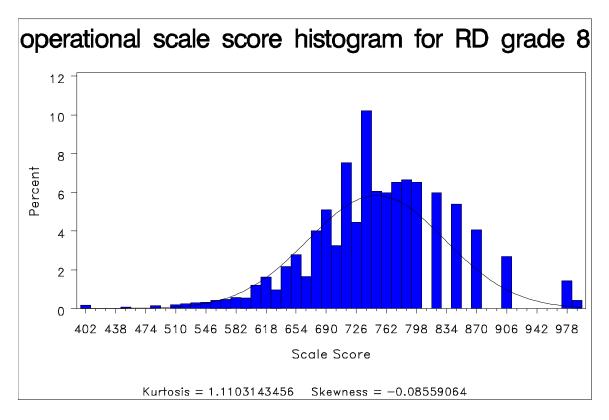
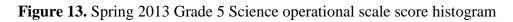
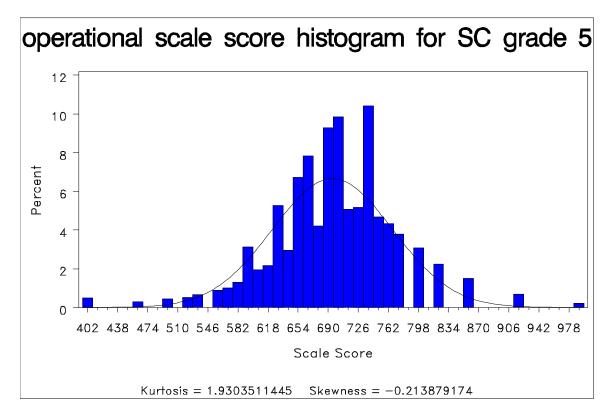
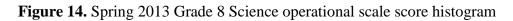


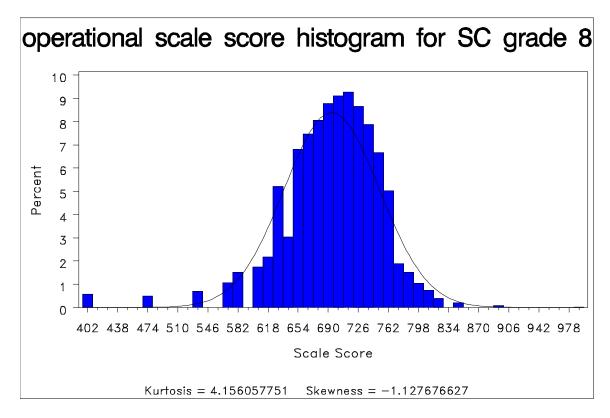



Figure 8. Spring 2013 Grade 4 Reading operational scale score histogram




Figure 12. Spring 2013 Grade 8 Reading operational scale score histogram

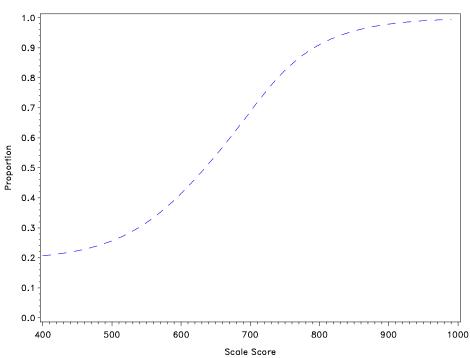
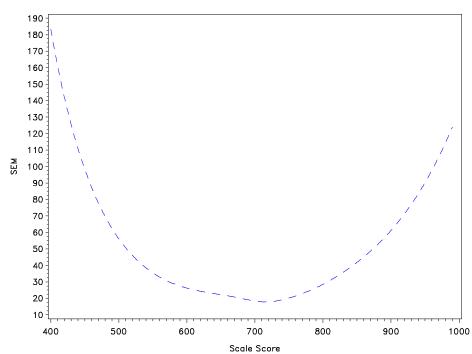


Figure 15. Spring 2013 Grade 3 Mathematics operational test characteristic curve and standard error of measurement curve



TCC Plot
content=MA level=3

OKG38 OCCT TCC/SEM/INF curves

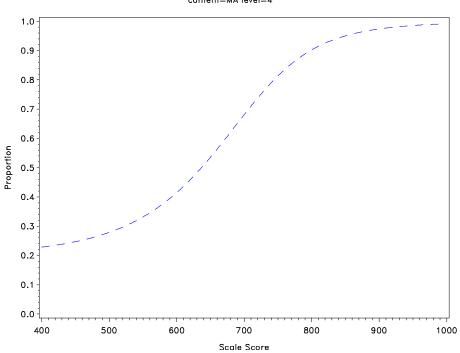
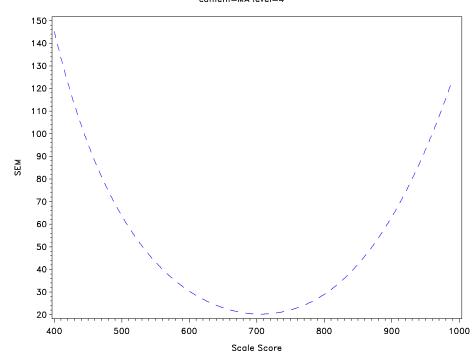

SEM Plot content=MA level=3

Figure 16. Spring 2013 Grade 4 Mathematics operational test characteristic curve and standard error of measurement curve



TCC Plot
content=MA level=4

OKG38 OCCT TCC/SEM/INF curves

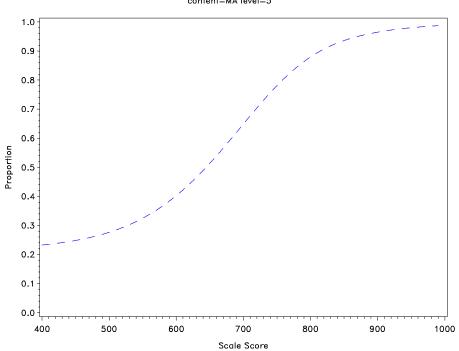
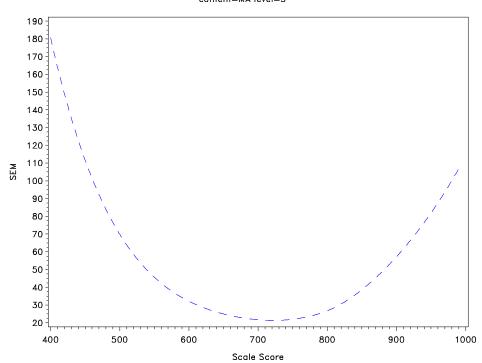

SEM Plot content=MA level=4

Figure 17. Spring 2013 Grade 5 Mathematics operational test characteristic curve and standard error of measurement curve



TCC Plot content=MA level=5

OKG38 OCCT TCC/SEM/INF curves

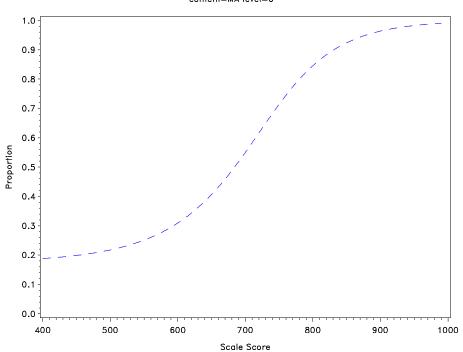
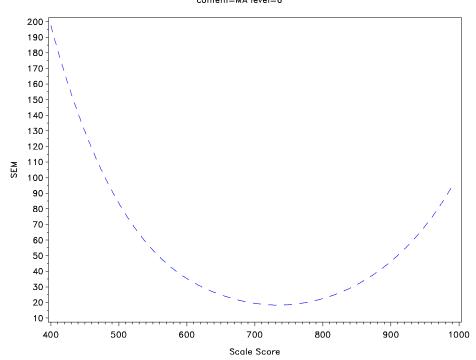

SEM Plot content=MA level=5

Figure 18. Spring 2013 Grade 6 Mathematics operational test characteristic curve and standard error of measurement curve



TCC Plot content=MA level=6

OKG38 OCCT TCC/SEM/INF curves

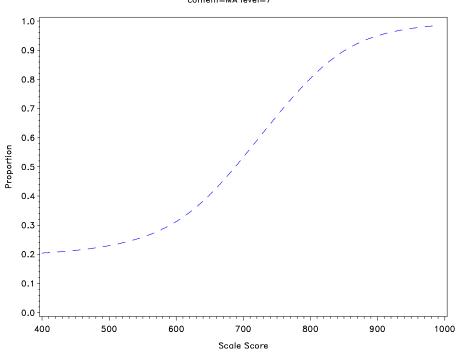
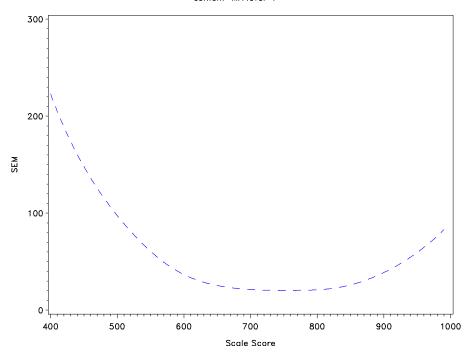
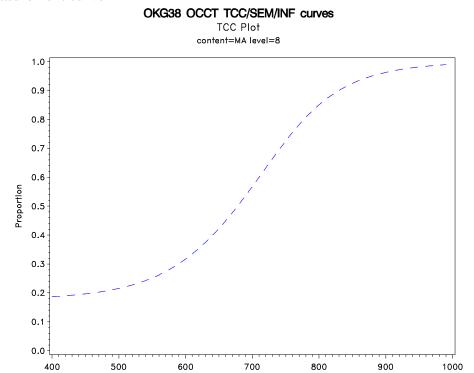

SEM Plot content=MA level=6

Figure 19. Spring 2013 Grade 7 Mathematics operational test characteristic curve and standard error of measurement curve



TCC Plot
content=MA level=7



OKG38 OCCT TCC/SEM/INF curves

SEM Plot content=MA level=7

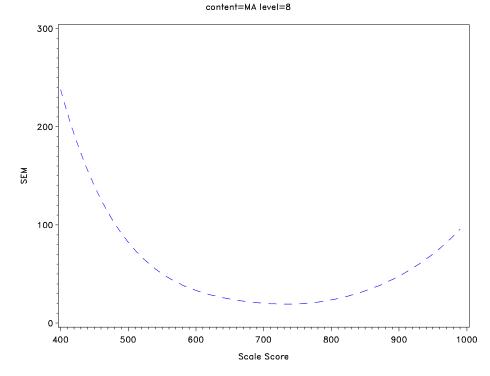
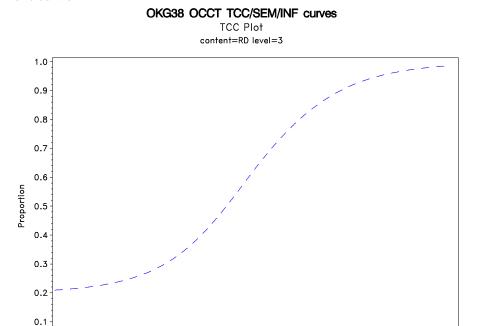


Figure 20. Spring 2013 Grade 8 Mathematics operational test characteristic curve and standard error of measurement curve



OKG38 OCCT TCC/SEM/INF curves SEM Plot

Scale Score

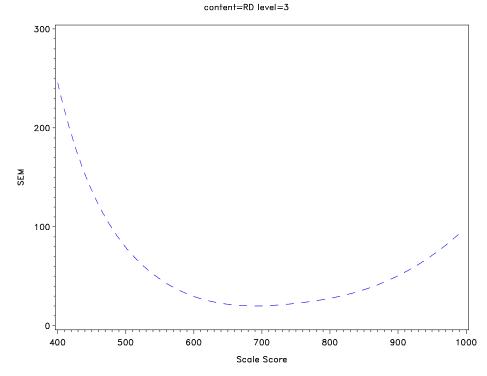
Figure 21. Spring 2013 Grade 3 Reading operational test characteristic curve and standard error of measurement curve

OKG38 OCCT TCC/SEM/INF curves SEM Plot

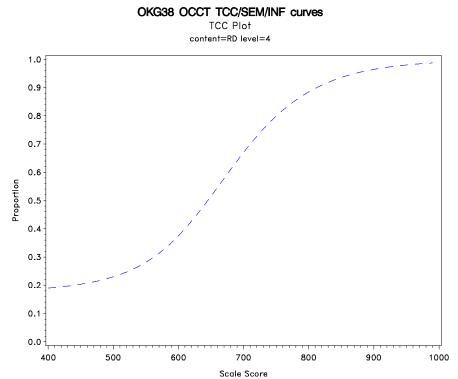
600

700

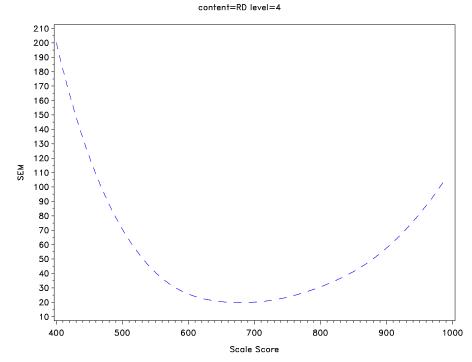
Scale Score

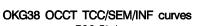

800

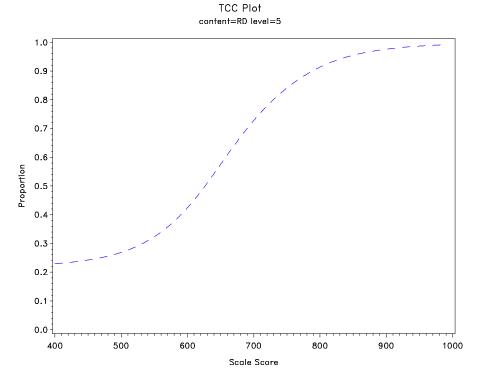
900


1000

0.0 | 400


500


Figure 22. Spring 2013 Grade 4 Reading operational test characteristic curve and standard error of measurement curve



OKG38 OCCT TCC/SEM/INF curves SEM Plot

Figure 23. Spring 2013 Grade 5 Reading operational test characteristic curve and standard error of measurement curve

OKG38 OCCT TCC/SEM/INF curves

SEM Plot content=RD level=5

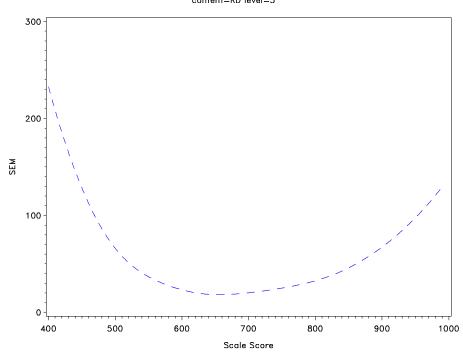
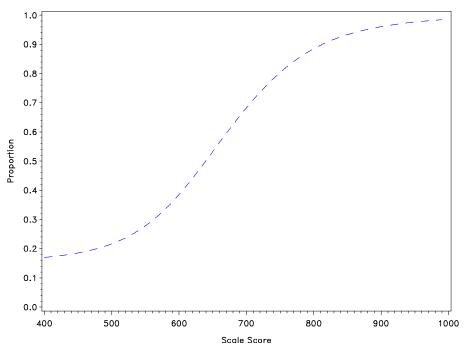
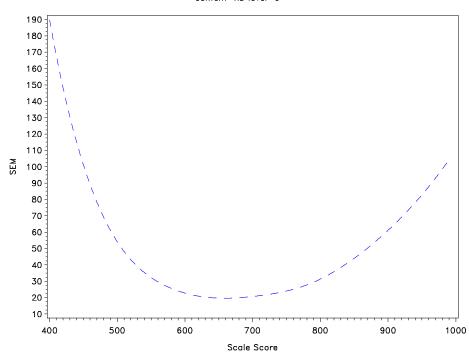
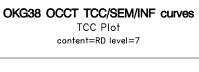
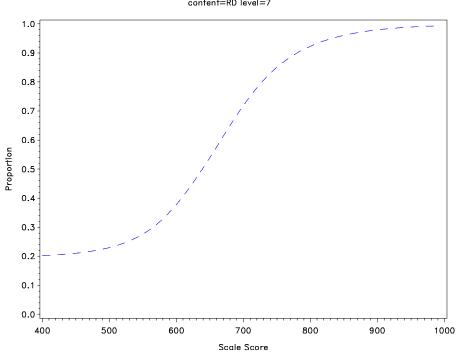



Figure 24. Spring 2013 Grade 6 Reading operational test characteristic curve and standard error of measurement curve

TCC Plot






OKG38 OCCT TCC/SEM/INF curves

SEM Plot content=RD level=6

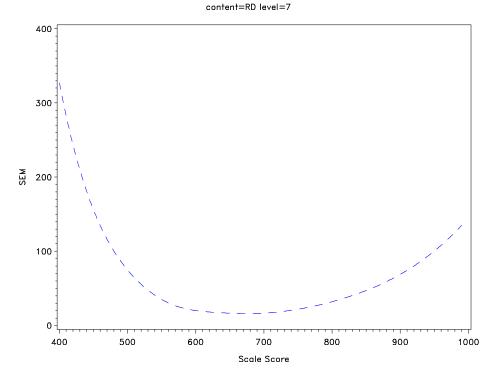


Figure 25. Spring 2013 Grade 7 Reading operational test characteristic curve and standard error of measurement curve



OKG38 OCCT TCC/SEM/INF curves SEM Plot

Figure 26. Spring 2013 Grade 8 Reading operational test characteristic curve and standard error of measurement curve

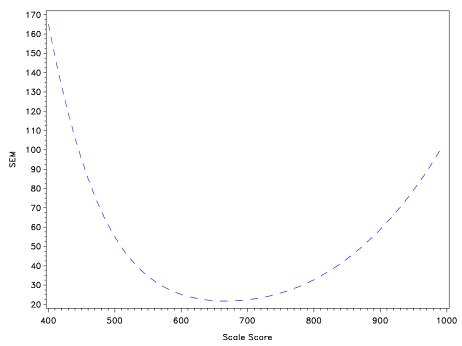
OKG38 OCCT TCC/SEM/INF curves

700

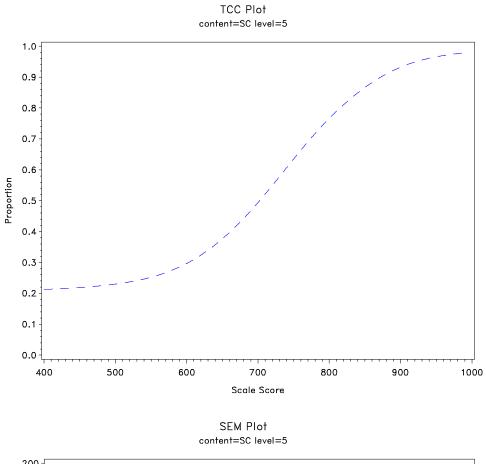
Scale Score

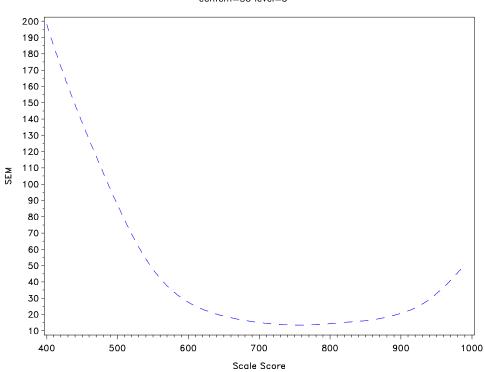
800

900

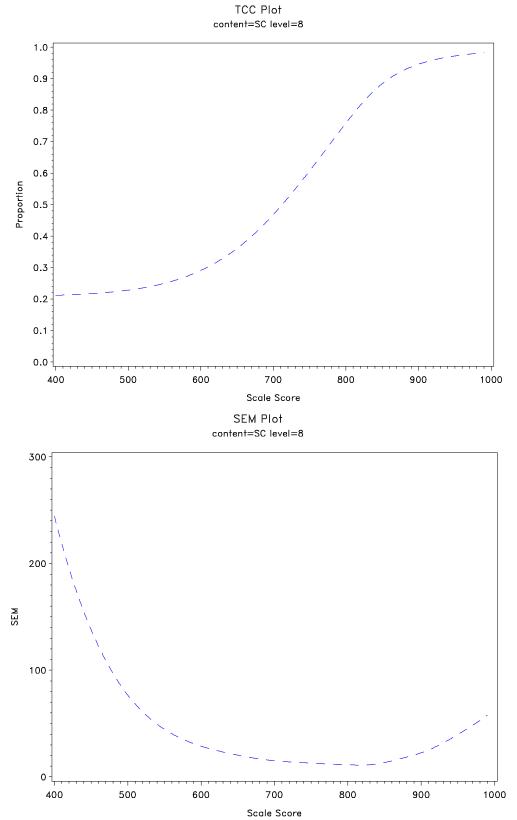

1000

600


400


500

SEM Plot content=RD level=8


Figure 27. Spring 2013 Grades 5 Science operational test characteristic curve and standard error of measurement curve

Copyright $\ensuremath{\mathbb{C}}$ 2013 by Oklahoma State Department of Education.

Figure 28. Spring 2013 Grades 8 Science operational test characteristic curve and standard error of measurement curve

Copyright $\ensuremath{\mathbb{C}}$ 2013 by Oklahoma State Department of Education.

Figure 29. Spring 2013 Grade 3 Mathematics scree plot: Total

Scree Plot content=MA level=3 Subgroup=Total

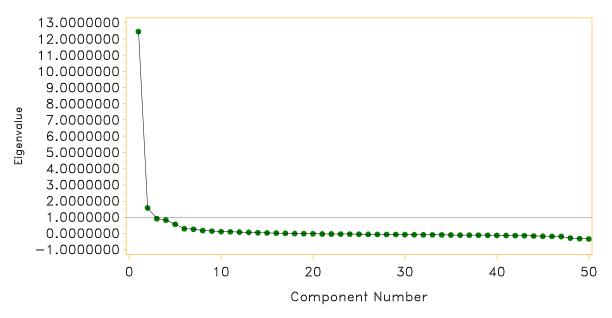


Figure 30. Spring 2013 Grade 3 Mathematics scree plot: Accommodated

Scree Plot content=MA level=3 Subgroup=accom

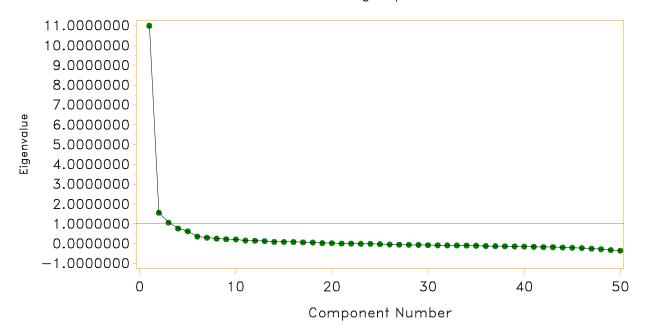


Figure 31. Spring 2013 Grade 3 Mathematics scree plot: English Language Learner

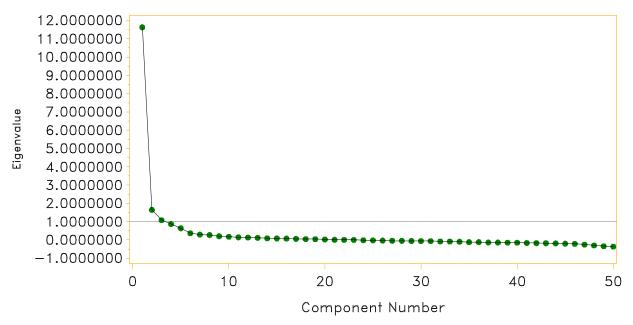


Figure 32. Spring 2013 Grade 3 Mathematics scree plot: Free Lunch

content=MA level=3 Subgroup=freelunch

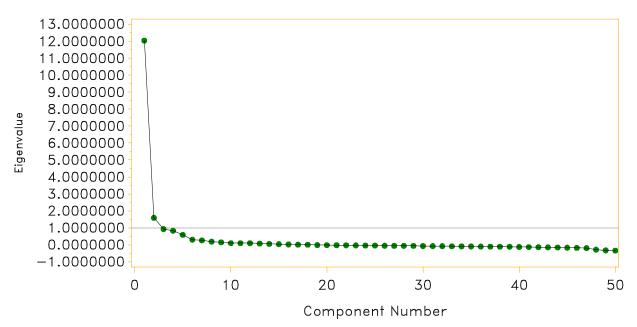


Figure 33. Spring 2013 Grade 3 Mathematics scree plot: Individualized Education Program

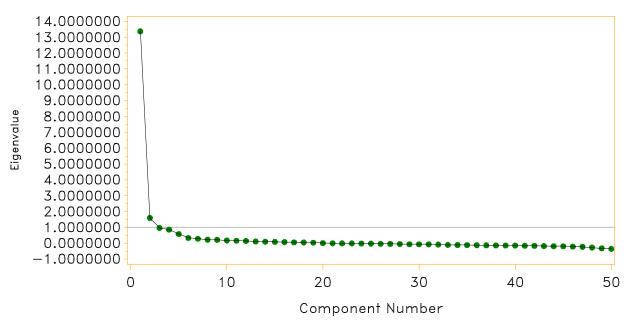


Figure 34. Spring 2013 Grade 4 Mathematics scree plot: Total

content=MA level=4 Subgroup=Total

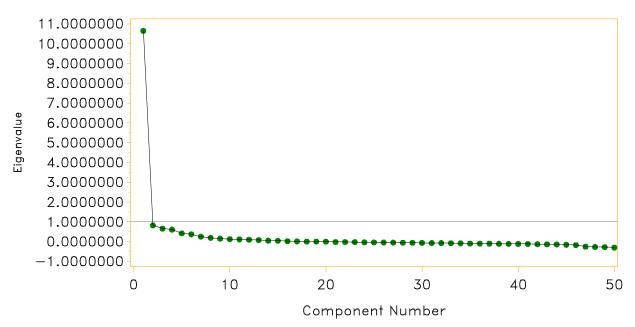


Figure 35. Spring 2013 Grade 4 Mathematics scree plot: Accommodated

content=MA level=4 Subgroup=accom

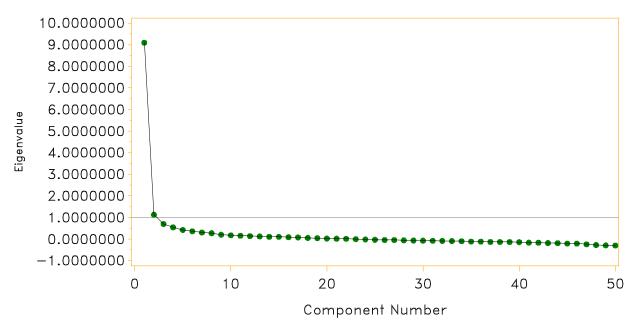


Figure 36. Spring 2013 Grade 4 Mathematics scree plot: English Language Learner

Scree Plot

content=MA level=4 Subgroup=ell

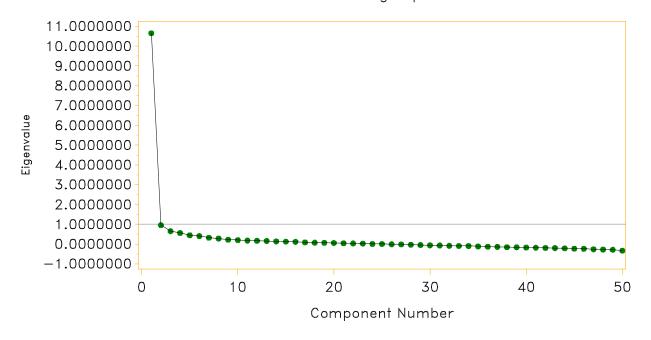


Figure 37. Spring 2013 Grade 4 Mathematics scree plot: Free Lunch

Scree Plot content=MA level=4 Subgroup=freelunch

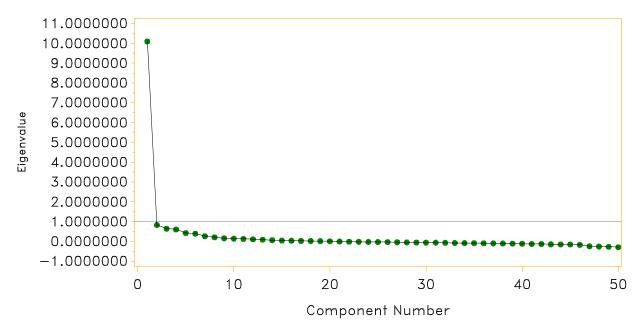


Figure 38. Spring 2013 Grade 4 Mathematics scree plot: Individualized Education Program

Scree Plot content=MA level=4 Subgroup=iep

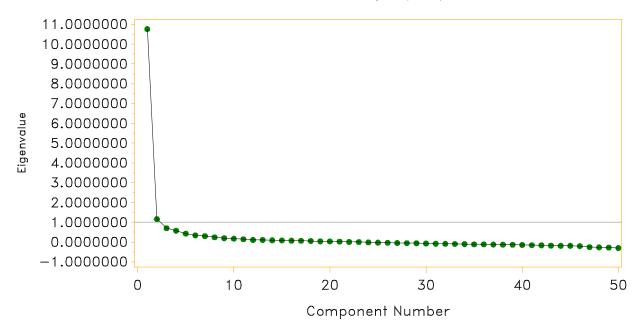


Figure 39. Spring 2013 Grade 5 Mathematics scree plot: Total

Scree Plot content=MA level=5 Subgroup=Total

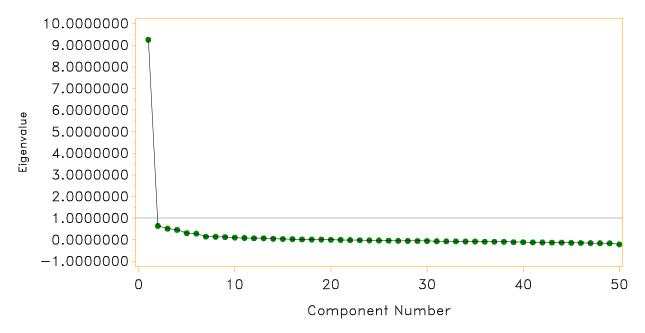


Figure 40. Spring 2013 Grade 5 Mathematics scree plot: Accommodated

Scree Plot content=MA level=5 Subgroup=accom

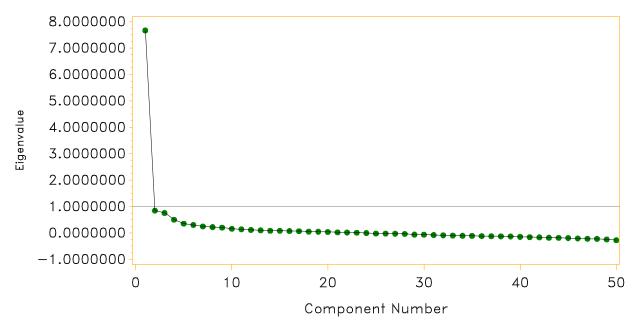


Figure 41. Spring 2013 Grade 5 Mathematics scree plot: English Language Learner

content=MA level=5 Subgroup=ell

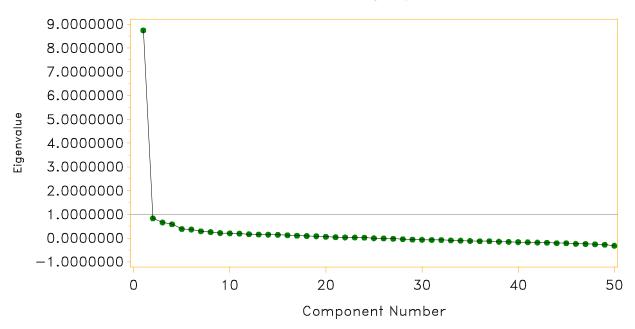


Figure 42. Spring 2013 Grade 5 Mathematics scree plot: Free Lunch

Scree Plot

content=MA level=5 Subgroup=freelunch

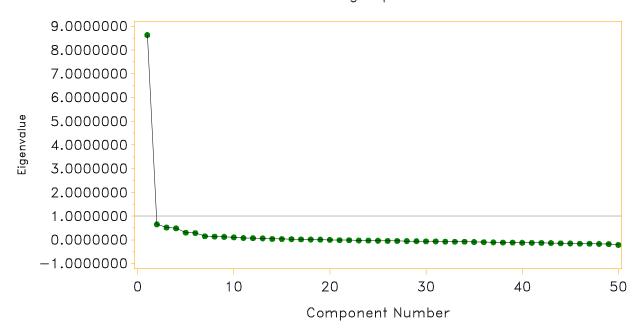


Figure 43. Spring 2013 Grade 5 Mathematics scree plot: Individualized Education Program

Scree Plot content=MA level=5 Subgroup=iep

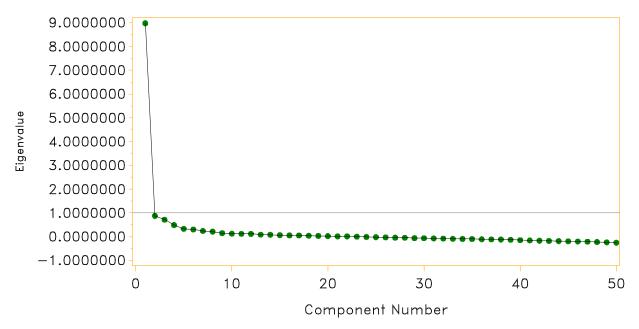


Figure 44. Spring 2013 Grade 6 Mathematics scree plot: Total

Scree Plot

content=MA level=6 Subgroup=Total

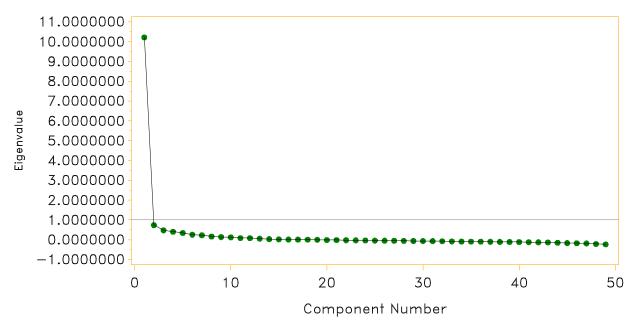
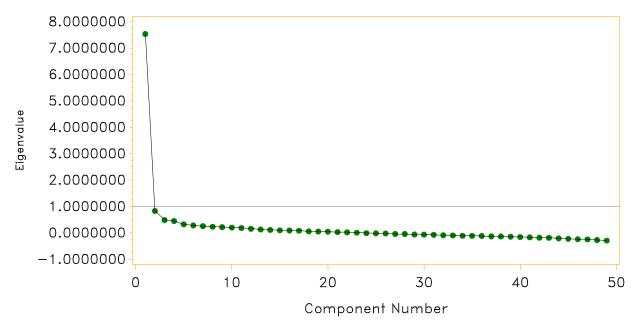



Figure 45. Spring 2013 Grade 6 Mathematics scree plot: Accommodated

Figure 46. Spring 2013 Grade 6 Mathematics scree plot: English Language Learner

Scree Plot content=MA level=6 Subgroup=ell

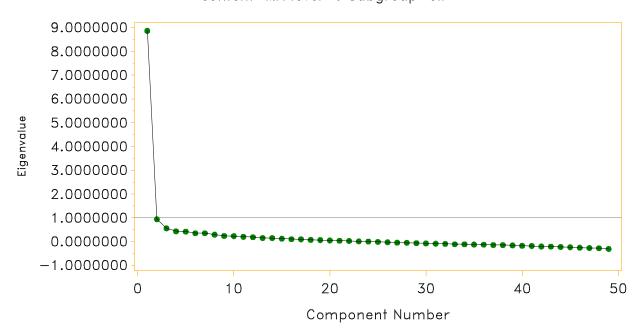
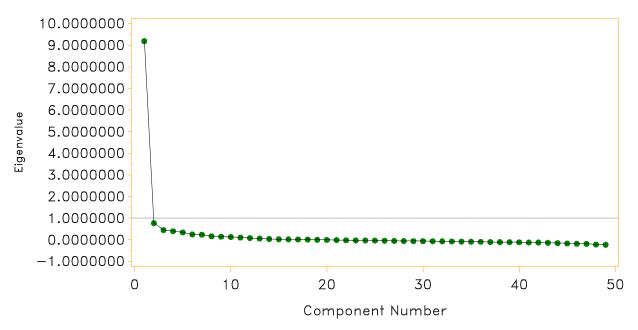



Figure 47. Spring 2013 Grade 6 Mathematics scree plot: Free Lunch

Scree Plot content=MA level=6 Subgroup=freelunch

Figure 48. Spring 2013 Grade 6 Mathematics scree plot: Individualized Education Program

Scree Plot content=MA level=6 Subgroup=iep

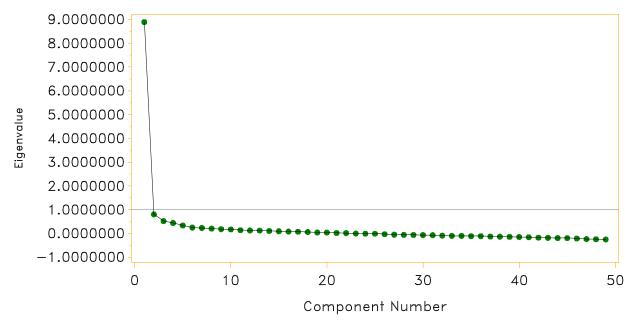


Figure 49. Spring 2013 Grade 7 Mathematics scree plot: Total

Scree Plot content=MA level=7 Subgroup=Total

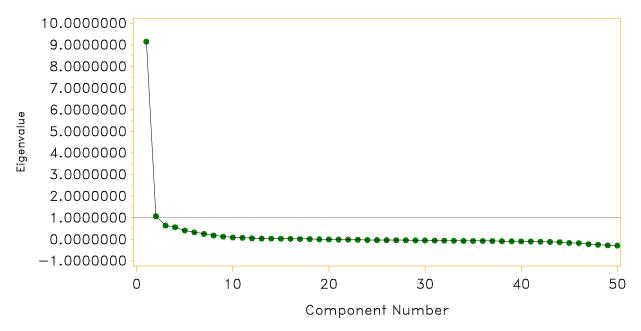


Figure 50. Spring 2013 Grade 7 Mathematics scree plot: Accommodated

Scree Plot content=MA level=7 Subgroup=accom

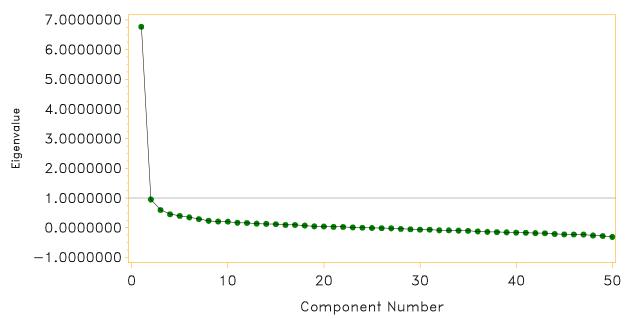


Figure 51. Spring 2013 Grade 7 Mathematics scree plot: English Language Learner

Scree Plot content=MA level=7 Subgroup=ell

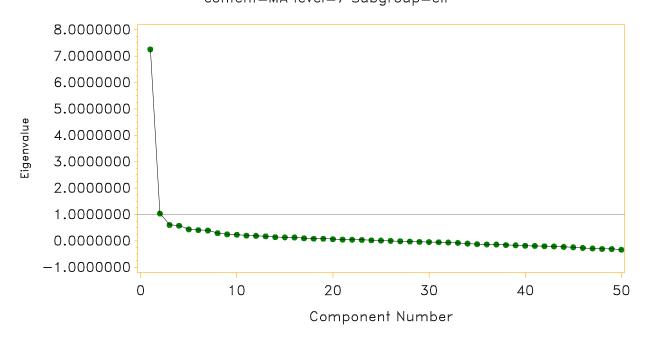
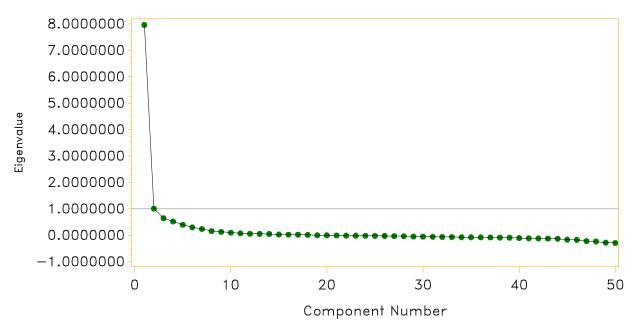
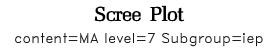



Figure 52. Spring 2013 Grade 7 Mathematics scree plot: Free Lunch


Scree Plot

content=MA level=7 Subgroup=freelunch

Copyright $\ensuremath{\text{@}}$ 2013 by Oklahoma State Department of Education.

Figure 53. Spring 2013 Grade 7 Mathematics scree plot: Individualized Education Program

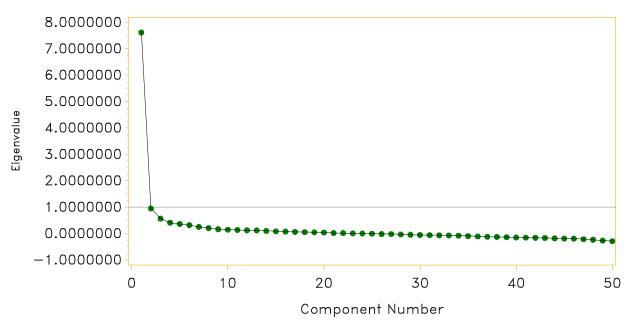


Figure 54. Spring 2013 Grade 8 Mathematics scree plot: Total

Scree Plot content=MA level=8 Subgroup=Total

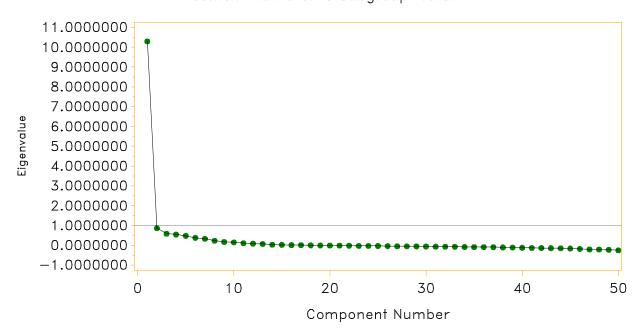


Figure 55. Spring 2013 Grade 8 Mathematics scree plot: Accommodated

Scree Plot content=MA level=8 Subgroup=accom

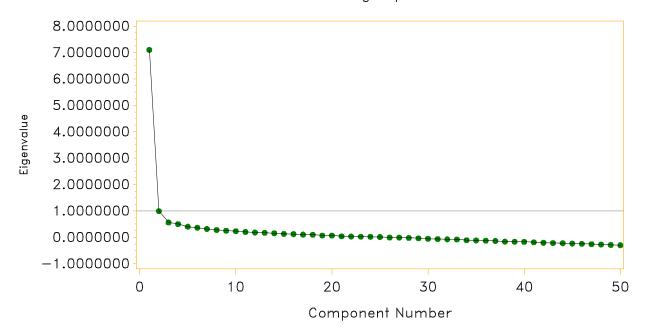


Figure 56. Spring 2013 Grade 8 Mathematics scree plot: English Language Learner

Scree Plot content=MA level=8 Subgroup=ell

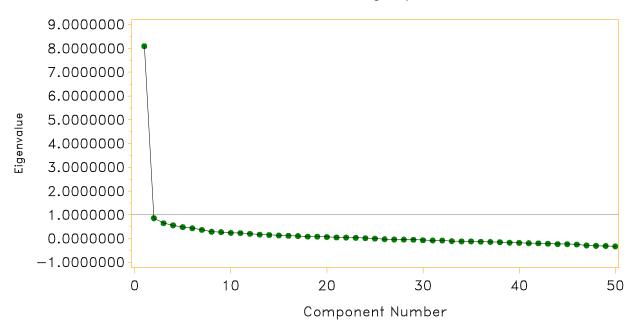


Figure 57. Spring 2013 Grade 8 Mathematics scree plot: Free Lunch

Scree Plot content=MA level=8 Subgroup=freelunch

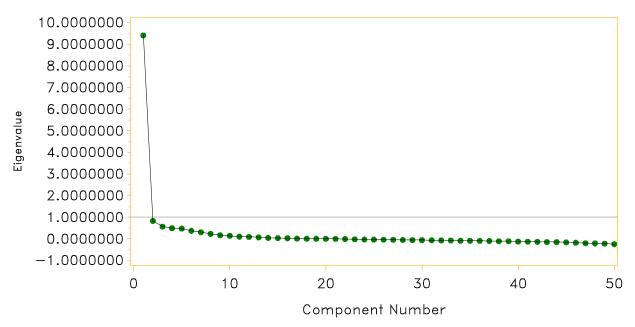


Figure 58. Spring 2013 Grade 8 Mathematics scree plot: Individualized Education Program

Scree Plot content=MA level=8 Subgroup=iep

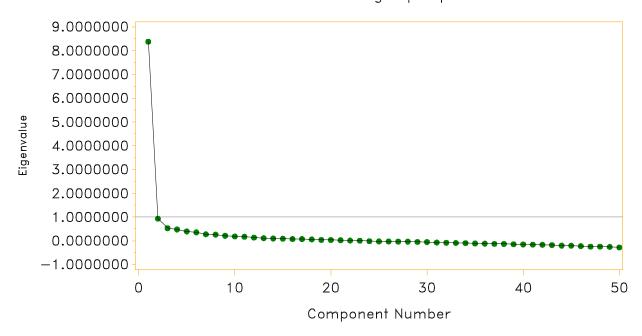


Figure 59. Spring 2013 Grade 3 Reading scree plot: Total

Scree Plot content=RD level=3 Subgroup=Total

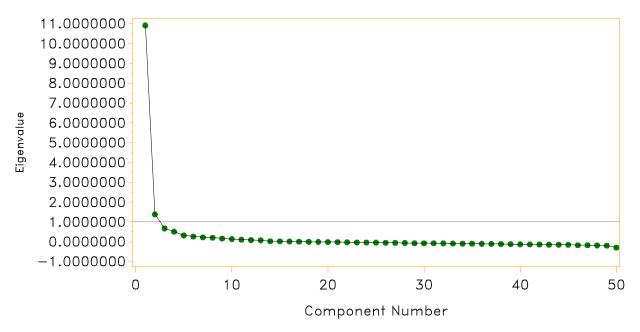


Figure 60. Spring 2013 Grade 3 Reading scree plot: Accommodated

Scree Plot

content=RD level=3 Subgroup=accom

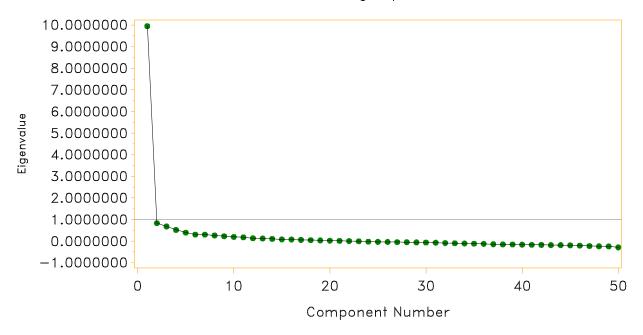


Figure 61. Spring 2013 Grade 3 Reading scree plot: English Language Learner

content=RD level=3 Subgroup=ell

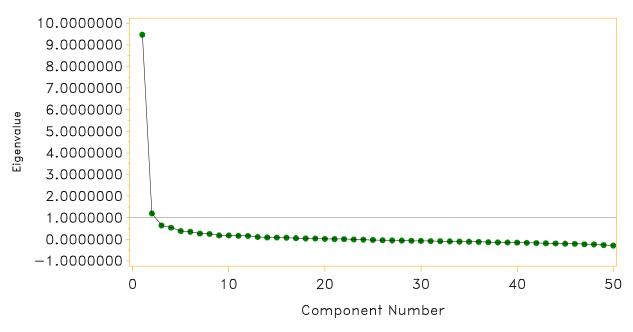


Figure 62. Spring 2013 Grade 3 Reading scree plot: Free Lunch

Scree Plot

content=RD level=3 Subgroup=freelunch

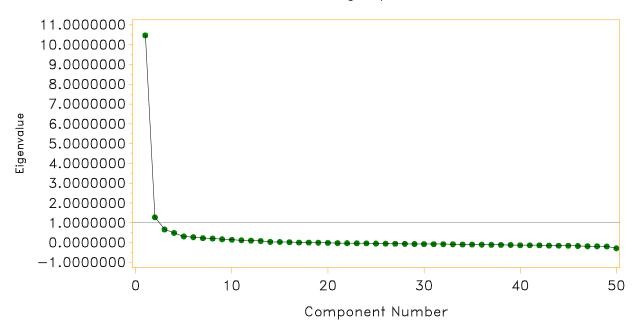
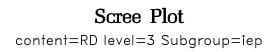



Figure 63. Spring 2013 Grade 3 Reading scree plot: Individualized Education Program

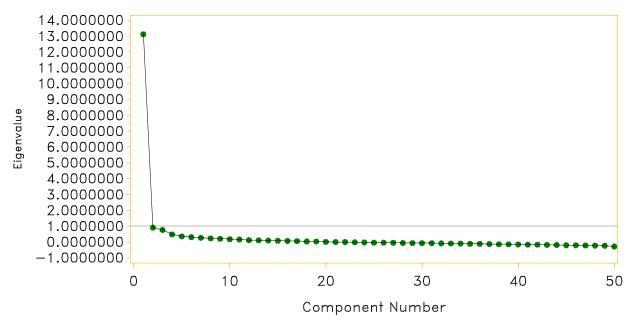


Figure 64. Spring 2013 Grade 4 Reading scree plot: Total

Scree Plot content=RD level=4 Subgroup=Total

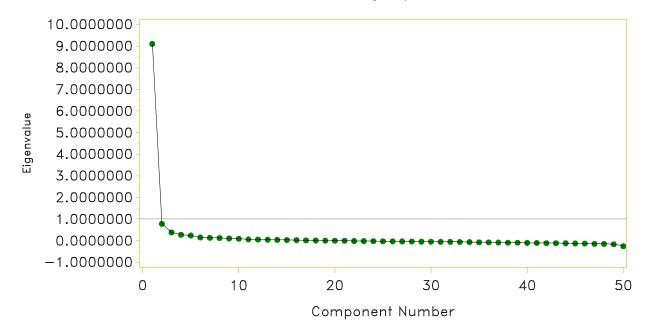


Figure 65. Spring 2013 Grade 4 Reading scree plot: Accommodated

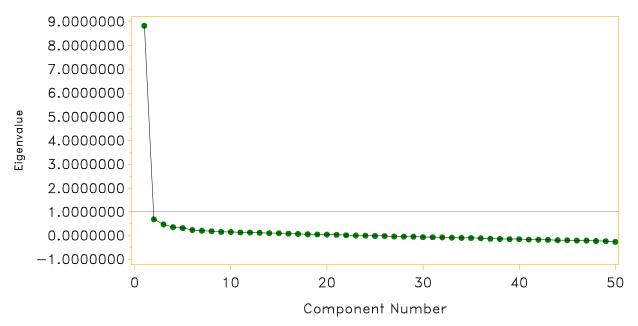


Figure 66. Spring 2013 Grade 4 Reading scree plot: English Language Learner

content=RD level=4 Subgroup=ell

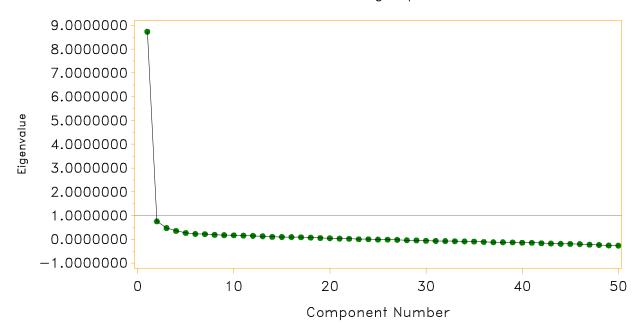


Figure 67. Spring 2013 Grade 4 Reading scree plot: Free Lunch

Scree Plot content=RD level=4 Subgroup=freelunch

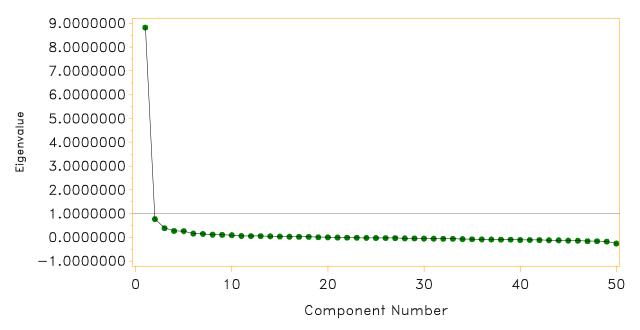


Figure 68. Spring 2013 Grade 4 Reading scree plot: Individualized Education Program

Scree Plot

content=RD level=4 Subgroup=iep

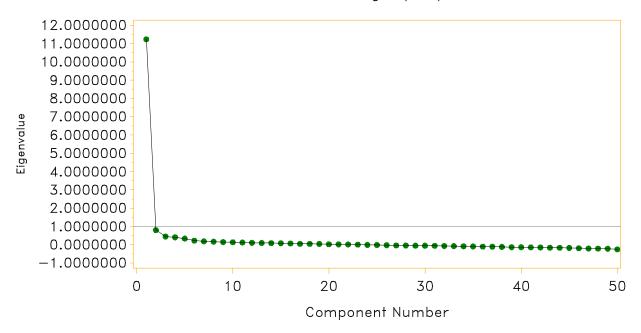
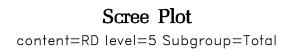



Figure 69. Spring 2013 Grade 5 Reading scree plot: Total

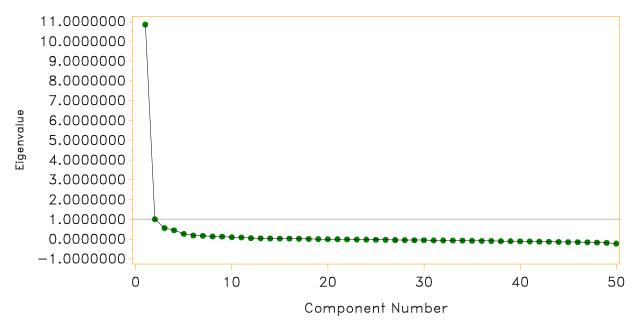


Figure 70. Spring 2013 Grade 5 Reading scree plot: Accommodated

content=RD level=5 Subgroup=accom

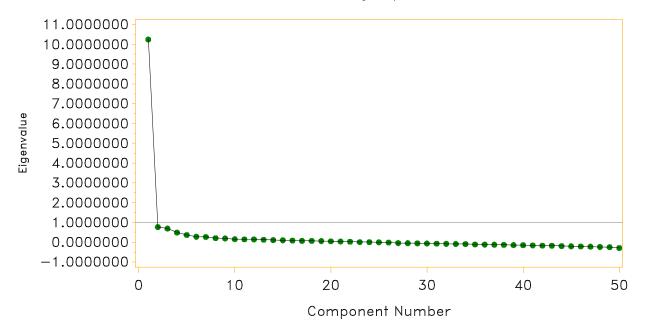


Figure 71. Spring 2013 Grade 5 Reading scree plot: English Language Learner

Scree Plot

content=RD level=5 Subgroup=ell

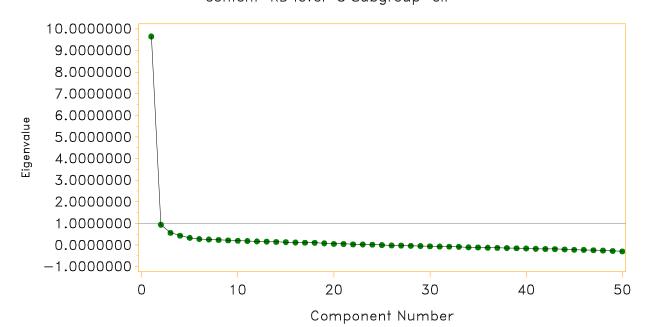


Figure 72. Spring 2013 Grade 5 Reading scree plot: Free Lunch

Scree Plot content=RD level=5 Subgroup=freelunch

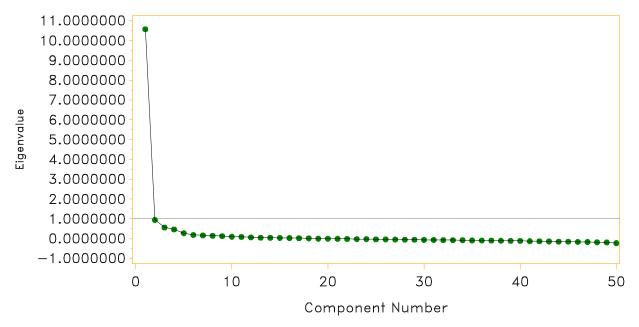


Figure 73. Spring 2013 Grade 5 Reading scree plot: Individualized Education Program

content=RD level=5 Subgroup=iep

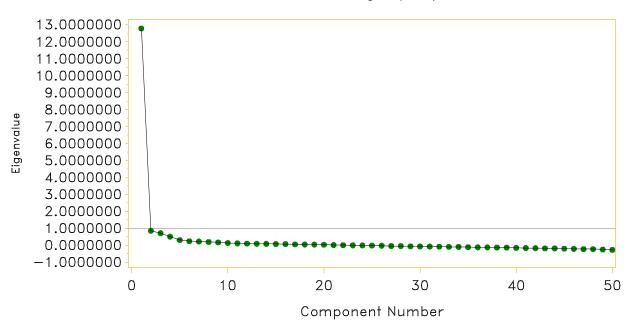


Figure 74. Spring 2013 Grade 6 Reading scree plot: Total

Scree Plot

content=RD level=6 Subgroup=Total

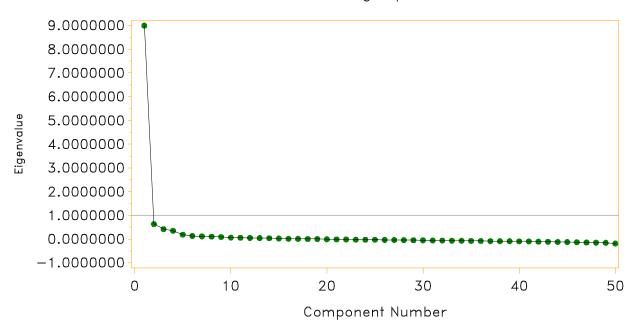


Figure 75. Spring 2013 Grade 6 Reading scree plot: Accommodated

Scree Plot content=RD level=6 Subgroup=accom

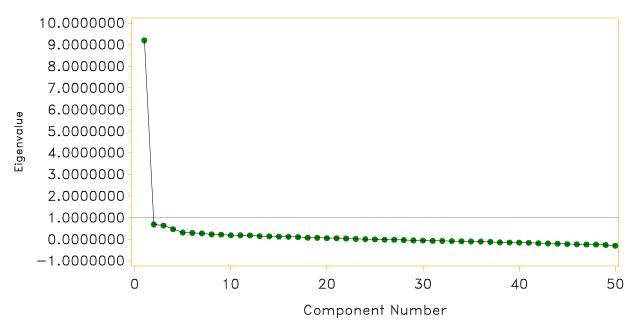


Figure 76. Spring 2013 Grade 6 Reading scree plot: English Language Learner

Scree Plot content=RD level=6 Subgroup=ell

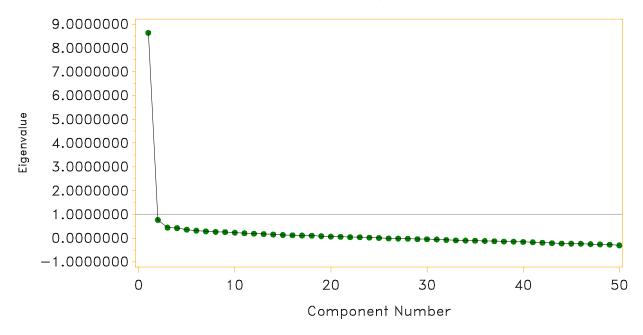


Figure 77. Spring 2013 Grade 6 Reading scree plot: Free Lunch

content=RD level=6 Subgroup=freelunch

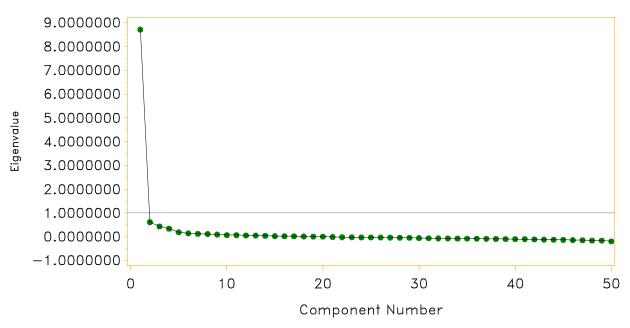


Figure 78. Spring 2013 Grade 6 Reading scree plot: Individualized Education Program

Scree Plot

content=RD level=6 Subgroup=iep

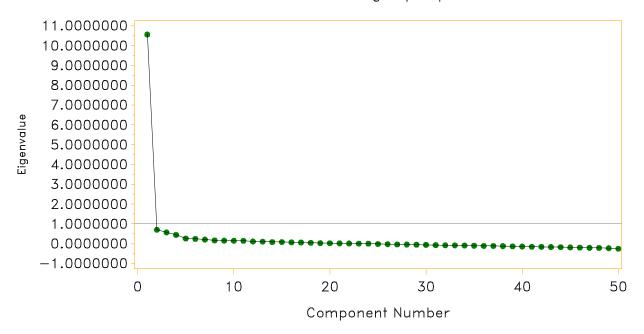


Figure 79. Spring 2013 Grade 7 Reading scree plot: Total

content=RD level=7 Subgroup=Total



Figure 80. Spring 2013 Grade 7 Reading scree plot: Accommodated

Scree Plot

content=RD level=7 Subgroup=accom

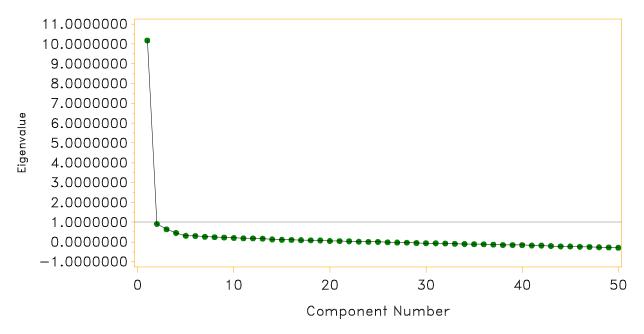


Figure 81. Spring 2013 Grade 7 Reading scree plot: English Language Learner

content=RD level=7 Subgroup=ell

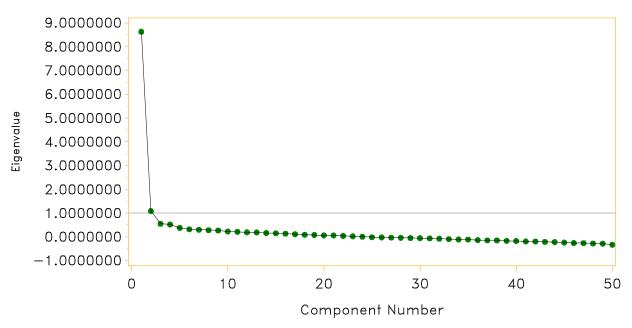


Figure 82. Spring 2013 Grade 7 Reading scree plot: Free Lunch

Scree Plot

content=RD level=7 Subgroup=freelunch

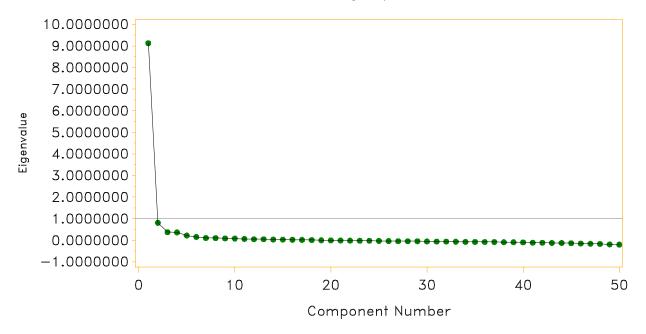


Figure 83. Spring 2013 Grade 7 Reading scree plot: Individualized Education Program

content=RD level=7 Subgroup=iep

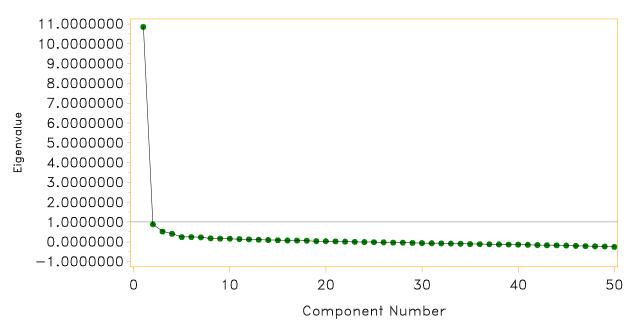


Figure 84. Spring 2013 Grade 8 Reading scree plot: Total

Scree Plot

content=RD level=8 Subgroup=Total

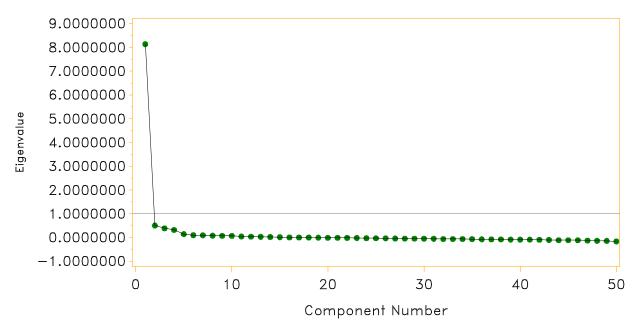
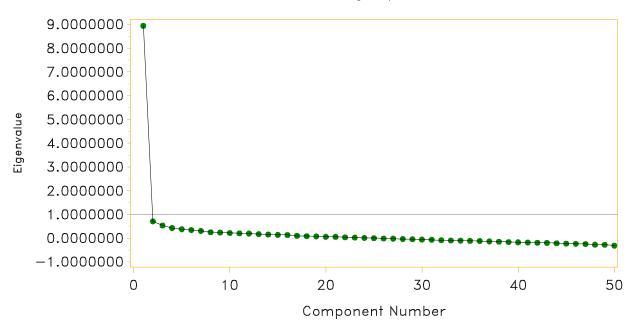



Figure 85. Spring 2013 Grade 8 Reading scree plot: Accommodated

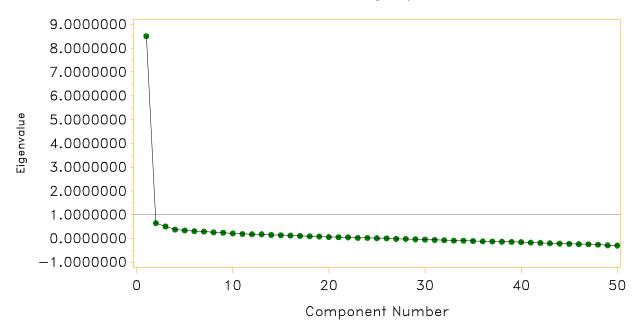

content=RD level=8 Subgroup=accom

Figure 86. Spring 2013 Grade 8 Reading scree plot: English Language Learner

Scree Plot

content=RD level=8 Subgroup=ell

Figure 87. Spring 2013 Grade 8 Reading scree plot: Free Lunch

content=RD level=8 Subgroup=freelunch

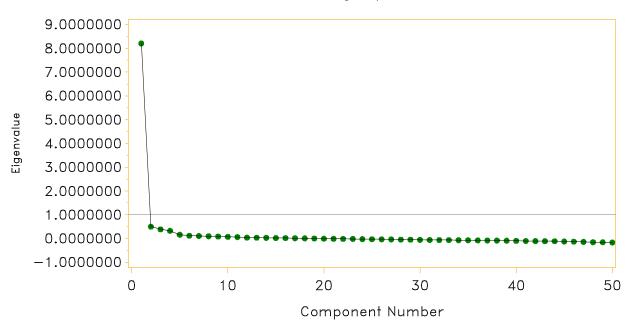


Figure 88. Spring 2013 Grade 8 Reading scree plot: Individualized Education Program

Scree Plot

content=RD level=8 Subgroup=iep

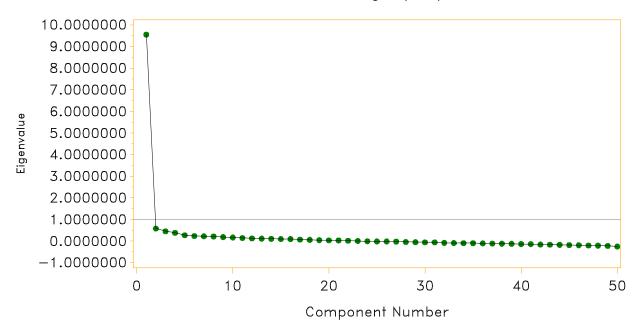


Figure 89. Spring 2013 Grade 5 Science scree plot: Total

Scree Plot content=SC level=5 Subgroup=Total

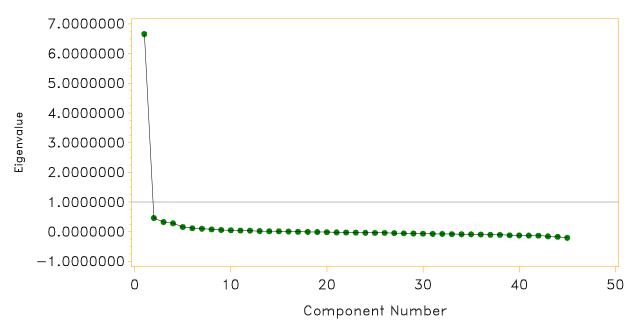


Figure 90. Spring 2013 Grade 5 Science scree plot: Accommodated

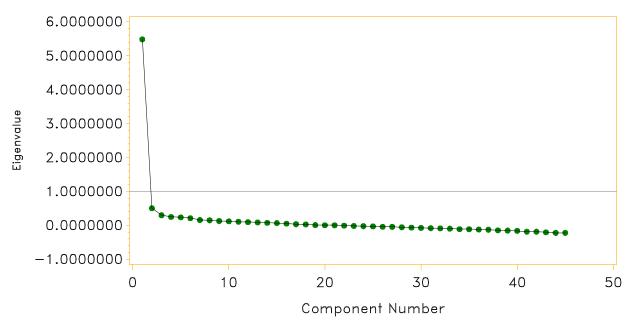
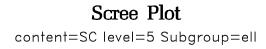



Figure 91. Spring 2013 Grade 5 Science scree plot: English Language Learner

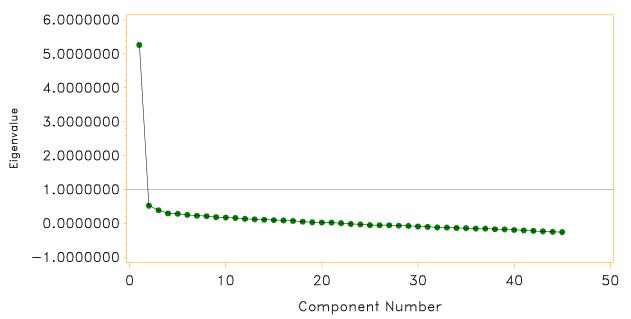


Figure 92. Spring 2013 Grade 5 Science scree plot: Free Lunch

Scree Plot content=SC level=5 Subgroup=freelunch

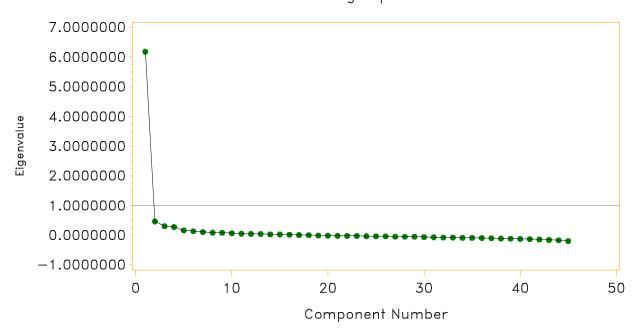
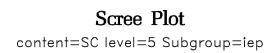



Figure 93. Spring 2013 Grade 5 Science scree plot: Individualized Education Program

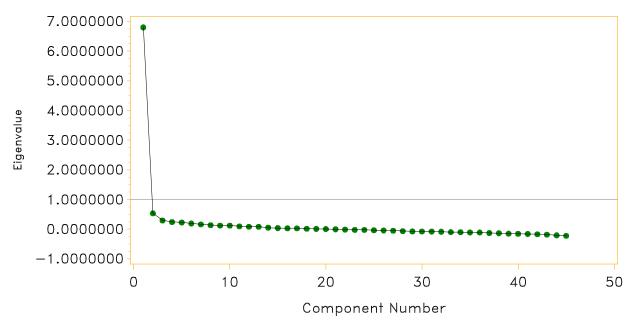


Figure 94. Spring 2013 Grade 8 Science scree plot: Total

content=SC level=8 Subgroup=Total

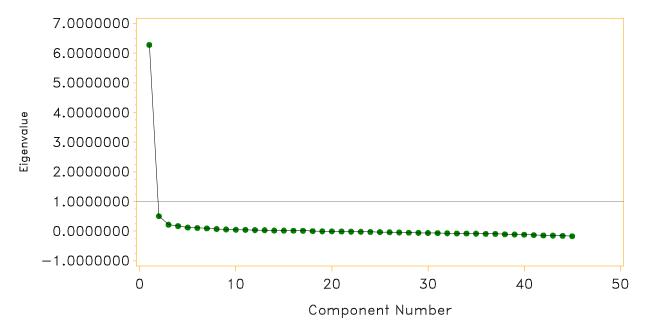
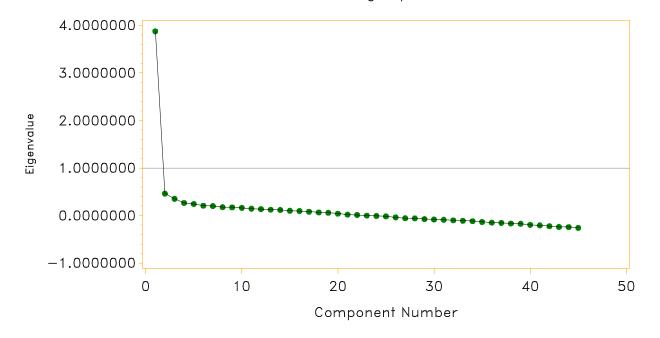



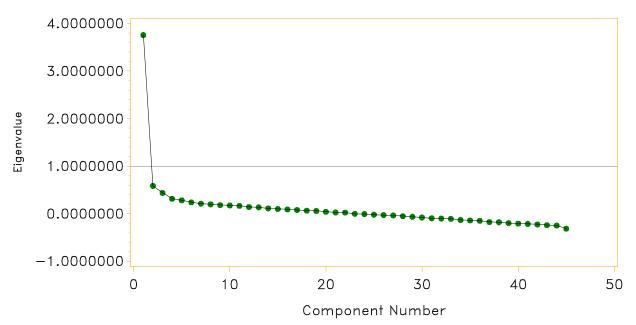
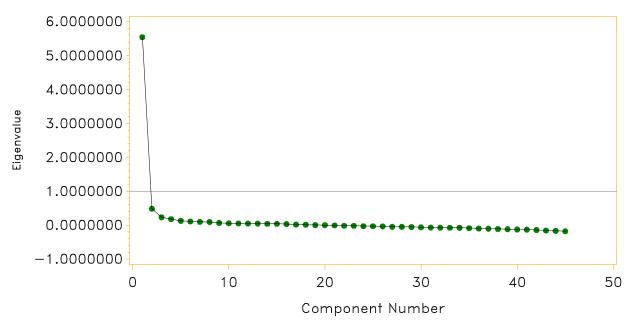
Figure 95. Spring 2013 Grade 8 Science scree plot: Accommodated

Scree Plot

content=SC level=8 Subgroup=accom

Figure 96. Spring 2013 Grade 8 Science scree plot: English Language Learner

Scree Plot content=SC level=8 Subgroup=ell

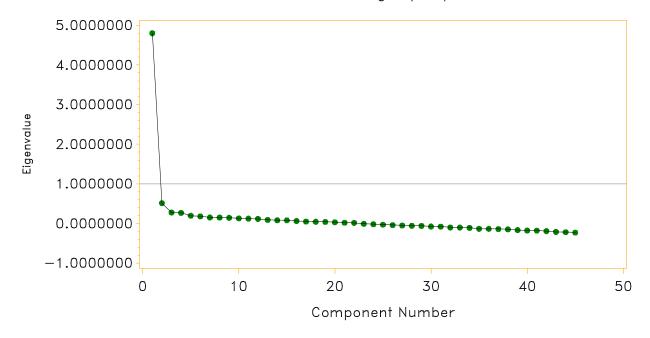

Figure 97. Spring 2013 Grade 8 Science scree plot: Free Lunch

Figure 98. Spring 2013 Grade 8 Science scree plot: Individualized Education Program **Scree Plot**

content=SC level=8 Subgroup=iep

Appendices

Appendix A Standards, Objectives/Skills, and Processes Assessed by Subject

Note: In 2013, field test sets in Mathematics and Reading included Common Core-aligned items as well as vertical linking items; these items are not included in the counts presented in this appendix.

OCCT Test Blueprint and Actual Item Counts: Grade 3 Mathematics

<i>OKC</i> ³ Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Algebraic Reasoning: Patterns and Relationships	7	7	5
Algebra Patterns, Equations (1.1)	2	2	0
Equations (1.2)	2	2	2
Number Properties (1.3)	3	3	3
Number Sense and Operation	20	20	10
Number Sense (2.1)	10	10	7
Number Operations (2.2)	10	10	3
Geometry	7	7	5
Properties of shapes (3.1)	3	3	2
Spatial Reasoning (3.2)	2	2	3
Coordinate Geometry (3.3)	2	2	0
Measurement	9	9	6
Measurement (4.1)	4	4	4
Time and Temperature (4.2)	2	2	0
Money (4.3)	3	3	2
Data Analysis	7	7	4
Data Analysis (5.1)	4	4	2
Probability (5.2)	3	3	2
Total Test	50	50	30

OCCT Test Blueprint and Actual Item Counts: Grade 4 Mathematics

OKC^3 Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Algebraic Reasoning: Patterns and Relationships	7	7	3
Algebra Patterns (1.1)	3	3	0
Equations (1.2)	2	2	0
Number Properties (1.3)	2	2	3
Number Sense and Operation	18	18	5
Number Sense (2.1)	8	8	0
Number Operations (2.2)	10	10	5
Geometry	9	9	5
Lines (3.1)	2	2	0
Angles (3.2)	2	2	0
Polygons (3.3)	3	3	5
Transformations (3.4)	2	2	0
Measurement	9	9	8
Measurement (4.1)	5	5	3
Time and Temperature (4.2)	2	2	0
Money (4.3)	2	2	5
Data Analysis	7	7	9
Data Analysis (5.1)	2	2	0
Probability (5.2)	2	2	3
Central Tendency (5.3)	3	3	6
Total Test	50	50	30

OCCT Test Blueprint and Actual Item Counts: Grade 5 Mathematics

<i>OKC</i> ³ Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Algebraic Reasoning: Patterns and Relationships	13	13	3
Algebra Patterns (1.1)	5	5	0
Equations (1.2)	4	4	0
Number Properties (1.3)	4	4	3
Number Sense and Operation	16	16	14
Number Sense (2.1)	8	8	9
Number Operations (2.2)	8	8	5
Geometry	7	7	9
Circles and Polygons (3.1)	4	4	6
Angles (3.2)	3	3	3
Measurement	7	7	2
Measurement (4.1)	5	5	0
Money (4.2)	2	2	2
Data Analysis	7	7	2
Data Analysis (5.1)	3	3	0
Probability (5.2)	2	2	0
Central Tendency (5.3)	2	2	2
Total Test	50	49	30

OCCT Test Blueprint and Actual Item Counts: Grade 6 Mathematics

-	Ideal		
OKC ³ Standard and Objective	Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Algebraic Reasoning: Patterns and			
Relationships	13	13	9
Algebra Patterns (1.1)	4	4	0
Expressions and Equations (1.2)	4	4	5
Number Properties (1.3)	3	3	2
Solving Equations (1.4)	2	2	2
Number Sense and Operation Number Sense (2.1)	15 5	15 5	5 0
Number Operations (2.2)	10	10	5
Geometry	8	8	6
Three Dimensional Figures (3.1)	2	2	1
Congruent and Similar Figures (3.2)	2	2	0
Coordinate Geometry (3.3)	4	3	5
Measurement	7	7	4
Circles (4.1)	4	4	3
Conversions (4.2)	3	3	1
Data Analysis	7	7	6
Data Analysis (5.1)	3	3	1
Probability (5.2)	2	2	3
Central Tendency (5.3)	2	2	2
Total Test	50	49*	30

^{*}One operational item aligned to objective 3.3 was suppressed because of an error.

OCCT Test Blueprint and Actual Item Counts: Grade 7 Mathematics

OCCI Test Blueprint and Actual Item Col	Ideal		
	Number of	Actual	Number of
	Items for	Number of	Items Field
OKC ³ Standard and Objective	Alignment to <i>OKC</i> ³ *	Items on 2013 Test	Tested in 2013
Algebraic Reasoning: Patterns and	to OKC	2013 Test	2013
Relationships	15	15	16
Linear Relationships (1.1)	5	5	5
Solving Equations (1.2)	5	5	5
Solving and Graphing Inequalities (1.3)	5	5	6
Number Sense and Operation	11	11	5
Number Sense (2.1)	5	5	4
Number Operations (2.2)	6	6	1
Geometry	8	8	1
Classifying Figures (3.1)	1-3	2	0
Lines and Angles (3.2)	1-3	2	1
Transformations (3.3)	4	4	0
Measurement	9	9	4
Perimeter and Area (4.1)	5	5	2
Circles (4.2)	2	2	2
Composite Figures (4.3)	2	2	0
Data Analysis	7	7	4
Data Analysis (5.1)	2	2	2
Probability (5.2)	2	2	0
Central Tendency (5.3)	3	3	2
Total Test	50	50	30

OCCT Test Blueprint and Actual Item Counts: Grade 8 Mathematics

	Ideal Number of	Actual	Number of
OKC ³ Standard and Objective	Items for Alignment to <i>OKC</i> ³ *	Number of Items on 2013 Test	Items Field Tested in 2013
Algebraic Reasoning: Patterns and			
Relationships	16	16	9
Equations (1.1)	10-12	12	5
Inequalities (1.2)	4-6	4	4
Number Sense and Operation	11	11	14
Number Sense (2.1)	3-4	3	3
Number Operations (2.2)	7-8	8	11
Geometry	9	9	3
Three Dimensional Figures (3.1)	5	5	1
Pythagorean Theorem (3.2)	4	4	2
Measurement	7	7	0
Surface Area and Volume (4.1)	3	3	0
Ratio and Proportions (4.2)	2	2	0
Composite Figures (4.3)	2	2	0
Data Analysis	7	7	4
Data Analysis (5.1)	3	3	0
Central Tendency (5.3)	4	4	4
Total Test	50	50	30

OCCT Test Blueprint and Actual Item Counts: Grade 3 Reading

OKC ³ Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Vocabulary	12	12	6
Words in Context (2.1)	2-4	3	3
Affixes, Roots, and Stems (2.2)	2-4	2	0
Synonyms, Antonyms, and Homonyms (2.3)	2-4	3	2
Using Resource Materials (2.4)	2-4	4	1
Comprehension/Critical Literacy	24	26	19
Literal Understanding (4.1)	5	5	5
Inferences and Interpretation (4.2)	7	9	3
Summary and Generalization (4.3)	6	5	3
Analysis and Evaluation (4.4)	6	7	7
Literature	8	6	3
Literary Elements (5.2)	3-4	3	1
Figurative Language/Sound Devices (5.3)	4-5	3	2
Research and Information	6	6	2
Accessing Information (6.1)	6	6	2
Total Test	50	50	29*

OCCT Test Blueprint and Actual Item Counts: Grade 4 Reading

OKC ³ Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Vocabulary	12	12	4
Words in Context (1.1)	4	5	1
Affixes, Roots, and Stems (1.2)	4	3	2
Synonyms, Antonyms and Homonyms (1.3)	4	4	1
Comprehension/Critical Literacy	23	23	17
Literal Understanding (3.1)	4	4	3
Inferences and Interpretation (3.2)	6	4	5
Summary and Generalization (3.3)	7	7	4
Analysis and Evaluation (3.4)	6	8	5
Literature	9	9	3
Literary Elements (4.2)	5	5	2
Figurative Language/Sound Devices (4.3)	4	4	1
Research and Information	6	6	6
Accessing Information (5.1)	6	6	6
Total Test	50	50	30

OCCT Test Blueprint and Actual Item Counts: Grade 5 Reading

<i>OKC</i> ³ Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Vocabulary	12	11	4
Words in Context (1.1)	4	3	2
Affixes, Roots, and Stems (1.2)	4	5	2
Synonyms, Antonyms, and Homonyms (1.3)	4	3	0
Comprehension/Critical Literacy	20	22	12
Literal Understanding (3.1)	4	7	3
Inferences and Interpretation (3.2)	4-6	6	5
Summary and Generalization (3.3)	4-6	4	3
Analysis and Evaluation (3.4)	4-6	5	1
Literature	12	11	9
Literary Genre (4.1)	4	3	2
Literary Elements (4.2)	4	3	5
Figurative Language/Sound Devices (4.3)	4	5	2
Research and Information	6	6	5
Accessing Information (5.1)	2-4	4	2
Interpreting Information (5.2)	2-4	2	3
Total Test	50	50	30

OCCT Test Blueprint and Actual Item Counts: Grade 6 Reading

OKC ³ Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Vocabulary	8	8	3
Words in Context (1.1)	4	2	2
Word Origins (1.2)	4	6	1
Comprehension/Critical Literacy	20	22	10
Literal Understanding (3.1)	4	8	1
Inferences and Interpretation (3.2)	4-6	5	3
Summary and Generalization (3.3)	4-6	4	3
Analysis and Evaluation (3.4)	4-6	5	3
Literature	14	12	11
Literary Genres (4.1)	4	7	2
Literary Elements (4.2)	4-6	2	4
Figurative Language/Sound Devices (4.3)	4-6	3	5
Research and Information	8	8	6
Accessing Information (5.1)	4	4	3
Interpreting Information (5.2)	4	4	3
Total Test	50	50	30

OCCT Test Blueprint and Actual Item Counts: Grade 7 Reading

<i>OKC</i> ³ Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Vocabulary	10	10	5
Words in Context (1.1)	3-4	6	1
Word Origins (1.2)	3-4	1	2
Idioms and Comparisons (1.3)	3-4	3	2
Comprehension/Critical Literacy	20	20	11
Literal Understanding (3.1)	4-5	5	2
Inferences and Interpretation (3.2)	4-6	6	1
Summary and Generalization (3.3)	4-6	5	4
Analysis and Evaluation (3.4)	4-6	4	4
Literature	12	12	6
Literary Genres (4.1)	4	5	2
Literary Elements (4.2)	4	3	0
Figurative Language/Sound Devices (4.3)	4	4	4
Research and Information	8	8	8
Accessing Information (5.1)	4	5	5
Interpreting Information (5.2)	4	3	3
Total Test	50	50	30

OCCT Test Blueprint and Actual Item Counts: Grade 8 Reading

OKC ³ Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Vocabulary	6	7	6
Words in Context (1.1)	2	2	4
Word Origins (1.2)	2	2	0
Idioms and Comparisons (1.3)	2	3	2
Comprehension/Critical Literacy	21	21	10
Literal Understanding (3.1)	4-5	4	3
Inferences and Interpretation (3.2)	4-6	6	1
Summary and Generalization (3.3)	5-7	4	3
Analysis and Evaluation (3.4)	6-8	7	3
Literature	15	14	8
Literary Genre (4.1)	4-5	5	2
Literary Elements (4.2)	5-7	5	1
Figurative Language/Sound Devices (4.3)	4-6	4	5
Research and Information	8	8	4
Accessing Information (5.1)	4	4	3
Interpreting Information (5.2)	4	4	1
Total Test	50	50	30

OCCT Test Blueprint and Actual Item Counts: Grade 5 Science

<i>OKC</i> ³ Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on	Number of Items Field Tested in 2013
Process Standards	10 OKC *	2013 Test	2013
Observe and Measure	10	11	11
SI Metric (P1.1)	4-6	4	5
Similar/different characteristics (P1.2)	4	7	6
Classify	10	9	14
Observable properties (P2.1)	4-6	5	9
Serial order (P2.2)	4-5	4	5
Experiment	13-15	13	13
Experimental design (P3.2)	9-11	9	7
Hazards/practice safety (P3.4)	4	4	6
Interpret and Communicate	12-14	12	22
Data tables/line/bar/trend and circle graphs (P4.2)	4-6	4	9
Prediction based on data (P4.3)	4-6	5	7
Explanations based on data (P4.4)	4-6	3	6
Total Test	45	45	60
Content Standards			
Properties of Matter and Energy	16-18	17	24
Matter has physical properties (1.1)	4-5	4	6
Physical properties can be measured (1.2)	4-5	5	6
Energy can be transferred (1.3)	4-5	4	6
Potential/Kinetic Energy (1.4)	4-5	4	6
Organisms and Environments	10-13	12	12
Organisms dependence (2.1)	5-7	6	6
Individual organism and species survival (2.2)	5-7	6	6
Structures of the Earth and the Solar System	12-15	12	18
Properties of Soils (3.1)	4-6	4	6
Weather patterns (3.2)	4-6	4	6
Earth as a planet (3.3)	4	4	6
Total Test	41	41	54

^{*} Items from the Safety Objective (P3.4) are not dual aligned to a content standard

OCCT Test Blueprint and Actual Item Counts: Grade 8 Science

OKC^3 Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Process Standards			
Observe and Measure	8-11	8	9
Qualitative/quantitative observations/changes (P1.1)	4-6	4	3
SI (metrics) units/appropriate tools (P1.2 and P1.3)	4-5	4	6
Classify	7-9	9	14
Classification system (P2.1)	4-6	4	7
Properties ordered (P2.2)	3-5	5	7
Experiment	15-17	16	19
Experimental design (P3.2)	6-7	7	8
Identify variables (P3.3)	6-7	6	9
Hazards/practice safety (P3.6)	3-4	3	2
Interpret and Communicate	12-14	12	18
Data tables/line/bar/trend and circle graphs (P4.2)	6-7	6	12
Explanations/prediction (P4.3)	6-7	6	6
Total Test	45	45	60
Content Standards			
Properties and Chemical Changes in Matter	8	8	11
Chemical reactions (1.1)	4	4	5
Conservation of matter (1.2)	4	4	6
Motion and Forces	8	8	10
Motion of an object (2.1)	4	4	4
Object subjected to a force (2.2)	4	4	6
Diversity and Adaptations of Organisms	7	7	8
Classification (3.1)	3	3	5
Internal and external structures (3.2)	4	4	3
Structures/Forces of the Earth/Solar System	11	11	20
Landforms result from constructive and destructive forces (4.1)	4	4	5
Rock cycle (4.2)	3-4	4	4
Global Weather Patterns (4.3)	3-4	3	11
Earth's History	7-8	8	9
Catastrophic events (5.1)	3-4	4	5
Fossil evidence (5.2)	3-4	4	4
Total Test	41-42	41	58

^{*} Items from the Safety Objective (P3.4) are not dual aligned to a content standard

OCCT Test Blueprint and Actual Item Counts: Grade 5 Social Studies

OKC ³ Standard and Objective	Ideal Number of Items for Alignment to OKC ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
James Towne Settlement and Plimoth Plantation Exploration	8	0	25
James Towne Settlement (1.1, 1.2, 1.3, 1.4)	4	0	19
Plimoth Plantation (1.5)	4	0	6
Colonial America	10	0	24
Colonial economics, trade/migration, perspectives (2.1, 2.3, 2.6)	4-6	0	14
Self-government, role of religion, leaders, and British and Native American Relationships (2.2, 2.4, 2.5)	4-6	0	10
American Revolution	18	0	20
Causes and effects of American Revolution (3.1) Founding Documents of the Revolutionary Era (3.2, 3.3, 3.4)	4-6 4-5	0	5 10
Events of the Revolutionary War (3.5)	4-5	0	3
Key individuals of the Revolutionary Era (3.6)	4-5	0	2
Early Federal Period	14	0	18
Causes, leaders, and issues of the Constitutional Convention (4.1, 4.2)	4-5	0	17
Purposes and principles of the U.S. Constitution (4.3)	4-6	0	1
Ratification of the U.S. Constitution and the Bill of Rights (4.4, 4.5)	4-5	0	0
Total Test	50	0	87

OCCT Test Blueprint and Actual Item Counts: Grade 7 Social Studies (Geography)

Occi Test Dideprint and Actual Item counts.	Ideal		- gj /
<i>OKC</i> ³ Standard and Objective	Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Geographic Tools/Geography Skills	6	0	5
Human and Physical Characteristics of Regions	12	0	14
Political and Physical/Cultural Regions (2.1, 2.2)	4-6	0	3
Physical and Human Characteristics Linking/Dividing Regions (2.3, 2.5)	4-6	0	9
Conflict and Cooperation (2.4)	4-6	0	2
Physical Systems of the Earth	6	0	14
Visual Information, Landforms and Bodies of Water (3.1)	2-4	0	12
Impact of Natural Disasters on Human Populations (3.2)	4-5	0	2
Human Systems: People and Cultures	16	0	33
Cultural Traits, Major World Religions, and Major Political Systems (4.1, 4.2, 4.5)	6-8	0	11
Economic Systems, Economic Interdependence and Trade (4.4, 4.6)	4-5	0	12
Human Characteristics of Developing and Developed Countries and Population Issues (4.3, 4.7)	4-5	0	10
Human Interaction with the Environment	10	0	11
Distribution of Resources (5.1)	4-6	0	4
Human Modification and Regional Problems (5.2, 5.3)	4-6	9	7
Total Test	50	0	77

OCCT Test Blueprint and Actual Item Counts: Grade 8 Social Studies (U.S. History)

OKC ³ Standard and Objective	Ideal Number of Items for Alignment to <i>OKC</i> ³ *	Actual Number of Items on 2013 Test	Number of Items Field Tested in 2013
Causes and Events of the American Revolution	8	0	13
Consequences of the French and Indian War, British Imperial Policies (1.1, 1.2)	4	0	7
Ideological War, <i>Declaration of Independence's</i> Grievances, Ideals, and Social Contract Selection (1.3, 1.4, 1.5)	4	0	6
The Revolutionary Era (2.0)	6	0	14
Articles of Confederation, Motivations & Choices, Key Military & Diplomatic Events (2.1, 2.2, 2.3)	6	0	14
Developing the American Government System (3.0)	10	0	3
Causes for the Constitutional Convention, and Ratification (3.1, 3.2, 3.3)	4-6	0	2
Constitutional Principles and the <i>Bill of Rights</i> (3.4, 3.5)	4-6	0	1
The Transformation of the United States to the Mid-1800s	16	0	39
Major Events and Issues of Early Presidential Administrations (4.1)	4-6	0	13
Jacksonian Era and Westward Expansion (4.2, 4.6) Sectional Economic Systems, African American	4-6	0	12
Experiences, and Reform Movements/Leaders (4.3, 4.4, 4.5)	4-6	0	14
Causes, Events, and Leadership in the Civil War	10	0	23
Causes of the Civil War: 1850s through the 1860s Presidential Elections (5.1, 5.2)	4-6	0	13
Advantages/Disadvantages, Leadership, Major Turning Points of the War (5.3, 5.4)	4-6	0	10
Total Test	50	0	80

Appendix B A Statistical Investigation of Oklahoma Computer Disruptions

A Statistical Investigation of Oklahoma Computer Disruptions

Final Report

Prepared for: Oklahoma Department of Education

2500 N. Lincoln Blvd.

Oklahoma City, OK 73105-4599

Authors: Matthew S. Swain

Arthur A. Thacker Bethany H. Bynum

Date: August 6, 2013

Human Resources Research Organization (HumRRO) 66 Canal Center Plaza, Suite 700, Alexandria, Virginia 22314-1578 Phone: 703.549.3611 | Fax: 703.549.9661 | www.humrro.org

2013 No. 053

A Statistical Investigation of Oklahoma Computer Disruptions

Final Report

Prepared for: Oklahoma Department of Education

2500 N. Lincoln Blvd.

Oklahoma City, OK 73105-4599

Authors: Matthew S. Swain

Arthur A. Thacker Bethany H. Bynum

Date: August 6, 2013

This version of the report should be considered draft and should not be distributed without the expressed permission of the Oklahoma State Department of Education.

A Statistical Investigation of Oklahoma Computer Disruptions

Table of Contents

Introduction
Methodology 5
Description of Four Cohorts
Computer Disruption Data Overview
Propensity Score Matching
2013 Score Differences
Cohort A Analyses
Cohort B Analyses
Cohort C Analyses
Cohort D Analyses
Summary
References
Appendix28
List of Tables
Table 1. Number of Students Interrupted by Day and Grade on Math Test 6
Table 2. Number of Students Interrupted by Day and Grade on Reading Test 7
Table 3. Interruption Data by Subject and Grade
Table 4. Frequency of Interruption by Test
Table 5. Descriptive and Inferential Statistics of 2013 Test Scores After Matching – Cohort A10
Table 6. Combined Regression Equation Adding Disruption – Cohort A11
Table 7. Separate Regression Equations for Disrupted and Non-Disrupted Groups – Cohort A12
Table 8. Distribution of the Difference between Predicted and Observed Scores for Non-disrupted and Disrupted Groups – Cohort A14

Table 9. Percent of Disrupted Students with Predicted and Observed Score Differences at the 5th, 10th, 90th and 95th Percentile of Non-disrupted Students – Cohort A	5
Table 10. Cohort A and Cohort B Comparison1	5
Table 11. Descriptive and Inferential Statistics of 2013 Test Scores After Matching – Cohort B1	6
Table 12. Combined Regression Equation Adding Disruption – Cohort B1	6
Table 13. Separate Regression Equations for Disrupted and Non-Disrupted Groups – Cohort B	
Table 14. Distribution of the Difference between Predicted and Observed Scores for Non-disrupted and Disrupted Groups – Cohort B1	8
Table 15. Percent of Disrupted Students with Predicted and Observed Score Differences at the 5th, 10th, 90th and 95th Percentile of Non-disrupted Students – Cohort B	
Table 16. Interrupted Cases on 2013 Algebra I Test by Grade2	:0
Table 17. Descriptive and Inferential Statistics of 2013 Test Scores After Matching - Cohort C2	:0
Table 18. Combined Regression Equation Adding Disruption – Cohort C2	:0
Table 19. Separate Regression Equations for Disrupted and Non-Disrupted Groups – Cohort C	
Table 20. Distribution of the Difference between Predicted and Observed Scores for Non- disrupted and Disrupted Groups – Cohort C2	2:2
Table 21. Percent of Disrupted Students with Predicted and Observed Score Differences at the 5th, 10th, 90th and 95th Percentile of Non-disrupted Students – Cohort C2	
Table 22. Descriptive and Inferential Statistics of 2013 Test Scores After Matching - Cohort D2	4
Table 23. Combined Regression Equation Adding Disruption – Cohort D2	4
Table 24. Separate Regression Equations for Disrupted and Non-Disrupted Groups – Cohort D	
Table 25. Distribution of the Difference between Predicted and Observed Scores for Non- disrupted and Disrupted Groups – Cohort D2	:5
Table 26. Percent of Disrupted Students with Predicted and Observed Score Differences at the 5th, 10th, 90th and 95th Percentile of Non-disrupted Students – Cohort D2	
Table A1. Mean Covariate Differences for Grade 6 Reading – Cohort A2	8.
Table A2. Mean Covariate Differences for Grade 6 Math – Cohort A2	9
Table A3. Mean Covariate Differences for Grade 7 Reading – Cohort A3	Ю

Table A4. Mean Covariate Differences for Grade 7 Math – Cohort A	31
Table A5. Mean Covariate Differences for Grade 8 Reading – Cohort A	32
Table A6. Mean Covariate Differences for Grade 8 Math – Cohort A	33
Table A7. Mean Covariate Differences for Grade 6 Reading – Cohort B	34
Table A8. Mean Covariate Differences for Grade 6 Math – Cohort B	35
Table A9. Mean Covariate Differences for Grade 7 Reading – Cohort B	36
Table A10. Mean Covariate Differences for Grade 7 Math – Cohort B	37
Table A11. Mean Covariate Differences for Grade 8 Reading – Cohort B	38
Table A12. Mean Covariate Differences for Grade 8 Math – Cohort B	39
Table A13. Mean Covariate Differences for 2013 Algebra – Cohort C	40
Table A14. Mean Covariate Differences for 2013 Algebra (7th & 8th) – Cohort C	41
Table A15. Mean Covariate Differences for 2013 English Group 1 – Cohort D	42
Table A16. Mean Covariate Differences for 2013 English Group 2 – Cohort D	43

A Statistical Investigation of Oklahoma Computer Disruptions

Abstract

On April 29th and April 30th, 2013, students in Oklahoma experienced technological delays or "interruptions" while completing their statewide Math and Reading assessments. The potential impact of those disruptions on test scores is the focus of this investigation. Multiple analytical approaches were conducted to determine the presence and magnitude of any effects. Additionally, analyses were conducted on multiple "cohorts" of students to examine if the effects of disruption on these two days were disparate from typical delays or interruptions during testing.

The testing vendor, CTB McGraw/Hill (CTB), conducted their own investigation of the impact of the test interruptions. The Oklahoma Department of Education (ODE) requested that an independent investigation of the interruption also be conducted. The Human Resources Research Organization (HumRRO) was selected to conduct the independent investigation¹. Data were provided by CTB (for the 2013 cohort of students) and ODE (test data from the prior vendor). CTB also shared their investigation methodology and results. This investigation verified CTB's initial data (e.g. percent of students impacted) but used independently derived methodology to investigate the impact of the interruptions and draw conclusions. HumRRO primarily compared students' predicted scores to their actual interrupted scores to investigate the presence and magnitude of the interruption effect.

HumRRO's analyses detected a small effect of the interruption. This effect was not consistent across grades and/or subjects, however. Students in some grade/subjects appear to have been disadvantaged by the interruption, while others performed better than expected. Even when statistically significant differences in mean scores were found within a grade/subject, the difference was not consistent across the distribution of students taking the test. Therefore, HumRRO does not recommend a mathematical adjustment of test scores.

Methodology

The primary goal of this investigation was to determine if the score a disrupted student received would have been different if the student had not been disrupted. That is, if two students who were very similar on all available variables that predicted 2013 test scores differed only in whether or not they were disrupted, any differences in those test scores could be more confidently stated to be an effect of disruption. Propensity score matching provides the ability to match students with similar distributions on a set of variables (Connelly, Sackett, & Waters, 2013). Each student in the disrupted group for each grade and subject test was matched with a student from the non-disrupted group. This matching was done using all available variables except for pertinent 2013 scores (i.e., the dependent variable). Multiple grades and subject tests were investigated leading to formation of four "cohorts."

Description of Four Cohorts

Students in grades 6 through 8 completing their Math and Reading tests and students in high school completing their end of instruction (EOI) exams were included in the investigation. The

¹ A similar study was carried out by Hill (2013) to investigate this same issue in Indiana.

OK testing window for the grades 3-8 tests runs from April 10 to April 30. Cohort A was defined first as all students in grades 6 through 8 who were interrupted during their Math and Reading tests. Because the interruptions on 4/29 and 4/30 were of particular interest, Cohort B was further refined from Cohort A to only include students who were interrupted on those two days. Tables 1 and 2 provide the frequencies of interruption by day and grade for Math and Reading tests, respectively. Clearly, interruptions on 4/29 and 4/30 were atypical.

Table 1. Number of Students Interrupted by Day and Grade on Math Test

		Gra	ade	
Day	6	7	8	Total
4/10/2013	139	23	12	174
4/11/2013	192	96	40	328
4/12/2013	122	55	26	203
4/15/2013	97	92	14	203
4/16/2013	95	75	45	215
4/17/2013	275	158	43	476
4/18/2013	108	69	61	238
4/19/2013	45	38	41	124
4/22/2013	48	23	31	102
4/23/2013	59	27	154	240
4/24/2013	66	46	167	279
4/25/2013	35	24	43	102
4/26/2013	14	12	12	38
4/29/2013	263	244	427	934
4/30/2013	490	344	676	1510
5/1/2013	10	5	15	30
5/2/2013	9	12	8	29
5/3/2013	1	4	1	6
5/6/2013	0	0	3	3
5/7/2013	0	1	0	1
Total	2068	1348	1819	5235

Table 2. Number of Students Interrupted by Day and Grade on Reading Test

		Gra	ade	
Day	6	7	8	Total
4/10/2013	174	86	78	338
4/11/2013	161	160	265	586
4/12/2013	276	146	191	613
4/15/2013	142	338	115	595
4/16/2013	286	216	124	626
4/17/2013	177	77	122	376
4/18/2013	84	127	93	304
4/19/2013	27	30	62	119
4/22/2013	45	52	71	168
4/23/2013	109	95	169	373
4/24/2013	116	68	106	290
4/25/2013	95	19	92	206
4/26/2013	9	20	82	111
4/29/2013	220	173	384	777
4/30/2013	357	269	264	890
5/1/2013	52	10	11	73
5/2/2013	7	16	11	34
5/3/2013	1	3	1	5
5/6/2013	1	0	3	4
5/7/2013	0	1	11	12
Total	2339	1906	2255	6500

Interruptions also occurred during the EOI exams completed primarily by high school students. Using the available data, two additional cohorts were constructed to explore the presence of disruption effects on EOI exams. These cohorts were chosen primarily based on what data were available. More specifically, the goal was to choose exams that had sufficient sample size to detect disruption effects, if any. Cohort C focused on students interrupted during their Algebra I test whereas Cohort D focused on students interrupted during their English II exam.

The report that follows will focus first on Cohorts A and B followed by Cohorts C and D.

Computer Disruption Data Overview

Interruption data provided to HumRRO included the test subject and grade level that each student was completing at the time of interruption for Cohorts A and B. Archival data regarding the student's prior year performance, demographic information, as well as current year performance on other exams was also provided. A total of 130,429 valid, unique IDs with complete Math test scores were recorded and 130,373 valid, unique IDs with complete Reading test scores were also recorded. After integrating the interruption data provided to HumRRO, it appears that 5,235 students were interrupted during their Math test *across all days* out of 130,429 students. For the Reading test, 6,500 students were interrupted *across all days* out of 130,373 students. These students formed Cohort A. An interruption rate was calculated to

examine the prevalence of interruption. The numbers of disrupted and non-disrupted students before matching, separated by grade level, are provided in Table 3.

Table 3. Interruption Data by Subject and Grade

		Math			Reading	
Grade	All Students	Disrupted	Interruption Rate	All Students	Disrupted	Interruption Rate
6	43,976	2,068	4.6%	43,957	2,339	5.3%
7	43,728	1,348	3.0%	43,716	1,906	4.3%
8	42,725	1,819	4.2%	42,700	2,255	5.2%
Total	130,429	5,235	4.0%	130,373	6,500	5.0%

The numbers of students in Table 3 are fairly consistent with those provided by CTB, for both non-disrupted and disrupted students. For those students who were disrupted, some were interrupted or delayed during their testing session multiple times. Although most students who were disrupted only experienced one delay, some students experienced many delays. Table 2 provides the frequency of disruption for each student in the disrupted group by test.

Table 4. Frequency of Interruption by Test

Table 1. I Tequel	ioy or interrupti	on by 100t
Interruption Number	Math	Reading
1	4,455	5,446
2	423	681
3	186	171
4	80	88
5	42	52
6	25	26
7	13	19
8	8	7
9	1	3
10	2	5
11	0	1
12	0	0
13	0	1

Propensity Score Matching

In an attempt to isolate the potential effect of disruption, propensity score matching was employed to select a sample of students from the non-disrupted group that closely resembles the disrupted group on all variables available that relate to 2013 scores. In one sense, propensity score matching attempts to "control for" these variables. With these groups established, differences in 2013 scores are more likely to be due to an effect of disruption.

The following variables were used as matching variables for Cohorts A and B:

- 2012 Math and Reading scaled scores
- Other subject 2013 scale scores (Reading score used if interrupted on 2013 Math test)
- Gender (0 = Female, 1 = Male)
- Ethnicity (Dummy coded)
- Limited English proficiency
- Student-level free/reduced lunch
- School-level proportion of free/reduced lunch students
- School-level achievement (Average of 2012 student-level Reading and Math scores)

Differences between disrupted and non-disrupted students on these matching variables were examined prior to matching. These differences were calculated using Cohen's *d* with "rule of thumb" cutoff values suggested by Harder, Stuart, & Anthony (2010). Across grades and subjects, the disrupted students seemed to be disproportionately African American and from schools with more free and reduced lunch students and lower achievement means. Given the relationships between these variables and the test scores on the disrupted test, it is clear why propensity score matching is a necessary method.

Next, using logistic regression, we regressed group membership (disrupted or not disrupted) on to the matching variables. Generally, the pseudo R-square values of the logistic regression were small, ranging from .0042 to .0242. Overall, the small values suggest that the combination of prior year student achievement, demographics, SES, school-level achievement or school-level SES had little relationship to the likelihood that a student experienced disruptions.

To match the two samples, the predicted disruption probabilities from the logistic regression analyses were saved. The predicted probabilities represent the probability that a student was in the disrupted sample. We used the nearest neighbor method to match the two samples. That is, the predicted disruption probability for each student in the disrupted sample was matched to the student with the closest predicted disruption probability in the non-disrupted sample. The sampling was done without replacement so that each student in the disrupted sample was matched with a unique student in the non-disrupted sample. The average difference between a disrupted student's predicted probability and the matched non-disrupted student's predicted probability was .000003 for Reading and .000003 for Math. The largest difference was .0016. Differences no larger than .20 have been shown to reduce bias and produce accurate group difference estimates (Austin, 2009; Connelly, Sackett, & Waters, 2013). The results suggest that everyone in the disrupted sample was matched with a student in the non-disrupted sample with a very similar predicted disruption probability. To further evaluate the closeness of the matched sample, we examined the mean difference of the matching variables. The average Cohen's d between the two samples was .002 and ranged from -.060 to .075 after matching. All of the differences greater than .10 prior to matching were reduced. Near zero effect sizes suggest that our samples have been effectively balanced on prior year achievement, school-level achievement, gender, ethnicity, and school-level free-or-reduced percentage. A summary of the mean, standard deviations, and effect sizes before and after matching can be found in the Appendix.

2013 Score Differences

Using the matched samples, we examined whether students' scores for tests impacted by computer interruptions differed from students' scores that were not impacted by computer disruptions. By matching the samples on variables that are likely to predict student scores, any difference between the two samples can be better attributed to the computer disruptions. We used a number of analyses to examine differences in scores. Scale scores for Math and Reading for the matched groups were examined four ways:

- 1. Mean differences on 2013 scores
- 2. R² change when combing groups and adding dichotomous disruption variable
- 3. R² differences when predicting 2013 scores separately
- 4. Applying Non-Disrupted regression equation from step 3 onto Disrupted group as well as 5th, 10th, 90th, and 95th percentile cuts

Cohort A Analyses

Differences in average 2013 test scores

Because these two matched groups are alike on variables that are typically predictive of test scores, if testing disruptions had no overall impact, then the averages of the 2013 test scores for the two groups would be expected to be nearly identical. Differences in the average 2013 test scores would be evidence that computer disruption impacted test performance. We examined mean differences between the two samples using a t-test and Cohen's *d* effect size. Table 5 presents the results by grade and subject for Cohort A.

Table 5. Descriptive and Inferential Statistics of 2013 Test Scores After Matching – Cohort A

		Disrupted		Non-Di	srupted		
	Ν	Mean	SD	Mean	SD	t	d
Grade 6 Reading	2,002	733.7	77.87	731.9	73.84	-0.75	0.024
Grade 7 Reading	1,625	724.6	66.99	726.4	68.69	0.76	-0.027
Grade 8 Reading	1,900	757.8	84.37	758.6	78.62	0.32	-0.010
Grade 6 Math	1,710	744.9	77.77	743.6	75.24	-0.49	0.017
Grade 7 Math	1,085	726.5	84.46	730.8	80.98	1.22	-0.052
Grade 8 Math	1,533	727.8	79.72	732.0	86.09	1.42	-0.051

Note. No *p*-values below .05.

For Reading, the effect sizes ranged from -.027 to .024, suggesting no overall directional effect. For Math, the effect sizes ranged from -.052 to .017. All effect sizes indicate very small mean differences between scale scores of the matched samples.

Examining the predictability of 2013 test scores

First, to examine predictability of 2013 test scores, we examined the incremental variance that disruption accounted for when added to the prediction of the 2013 test scores beyond other known indicators of performance (including prior year achievement, ethnicity, gender, school-level achievement, and school-level percentage of free-or-reduced lunch). If the inclusion of disruption in the multiple regression models adds to the estimation of 2013 scores, then this would supply evidence that disruption impacted 2013 test scores. For this model, the two groups were included in the regression models together.

Table 6 reports the R-square values for each model and the R-square change between the two models. With the inclusion of disruption in the model, the R-square value changed very little or not at all, indicating that disruption did not add to the prediction of 2013 scores.

Table 6. Combined Regression Equation Adding Disruption – Cohort A

	N	Covariates Only R ²	Covariates + Disrupted R ²	ΔR^2
Grade 6 Reading	4,004	0.5759	0.5760	<0.001
Grade 7 Reading	3,250	0.5331	0.5339	0.001
Grade 8 Reading	3,800	0.5105	0.5105	< 0.001
Grade 6 Math	3,420	0.5788	0.5791	< 0.001
Grade 7 Math	2,170	0.5550	0.5552	<0.001
Grade 8 Math	3,066	0.5162	0.5167	0.001

Next, using all of the data we have available to create equations that predict students' 2013 test scores, we can statistically determine whether disrupted students scored differently than expected. Prediction equations were estimated for the disrupted students and separately for the matched sample of non-disrupted students. In addition to prediction equations, this technique gives us multiple regression coefficients (R-square) that can be interpreted like a correlation coefficient to tell us how well 2013 test scores can actually be predicted from our available data. If students' performance was affected, the strength of the prediction for the disrupted students should be less than the non-disrupted students as shown by lower multiple regression coefficients. A lower coefficient means that students' performance in the disrupted group was not as predictable as students' performance in the non-disrupted group. This would supply another piece of evidence about the impact of the computer disruptions. Table 7 presents the multiple regression coefficients (R-square) for the disrupted and non-disrupted groups. Overall, 2013 test scores were well predicted for both samples, with 52% to 59% of the variance accounted for by the predictor variables for Reading, and 55% to 59% for Math. Generally, there were slightly higher R-square values for the non-disrupted group, although the difference in variance accounted for was practically small ranging from 0.9% to 6%.

Table 7. Separate Regression Equations for Disrupted and Non-Disrupted Groups – Cohort A

	Ν	Disrupted R ²	Non-Disrupted R ²	ΔR^2
Grade 6 Reading	2,002	0.574	0.589	-0.015
Grade 7 Reading	1,625	0.521	0.551	-0.030
Grade 8 Reading	1,900	0.533	0.494	0.039
Grade 6 Math	1,710	0.578	0.587	-0.009
Grade 7 Math	1,085	0.548	0.577	-0.029
Grade 8 Math	1,533	0.488	0.547	-0.059

Examining distributions of predicted student scores

The prediction equations for the non-disrupted students give us a statistical statement about what to expect normally for students testing under non-disrupted conditions. We know that the prediction is not perfect, but given the high R-square values we can use the prediction equation to calculate how disrupted students might have scored had they not been disrupted. For each disrupted student, we computed their predicted score using the regression equation computed for the non-disrupted students. Next, we took the difference between the observed score and predicted score, where positive values indicate higher observed scores than predicted and negative values indicate higher predicted scores than observed--imagine a distribution of observed minus predicted score differences. "Large numbers" of students with "notable differences" between obtained and predicted scores provides another piece of evidence about the impact of the computer disruptions. Table 8 presents the distribution of observed and predicted scores for the disrupted and non-disrupted sample for Reading and Math. The difference between the observed and predicted score is also reported.

Finally, we assessed "*large number*" and a "*notable difference*" between obtained and predicted scores for interrupted students by comparing the difference in observed and predicted scores for the non-disrupted group to the difference for the disrupted group. Since our non-disrupted group of students represents what would be expected under normal testing conditions, on average, the difference between the observed and predicted score can be considered a baseline. That is, the average difference for non-disrupted students is what is expected to naturally occur based on the fact that our prediction, inherently, can never be perfect.

We evaluated differences in two ways. First, we examined the difference in the standard deviation of differences for the disrupted and non-disrupted group using an *F*-test. This provides information on whether the spread of differences in predicted and observed scores is statistically different for the two groups (i.e., students are more affected, on average, in the disrupted group than the non-disrupted group). Results suggest that the standard deviation of the difference scores is larger in the disrupted group for grade 6 Reading and grades 6 and 7 Math (see bolded SDs in Table 8).

Next, we took the difference in observed and predicted scores at the 5th, 10th, 90th and 95th percentile for the non-disrupted group and determined the number of students in the disrupted group that were at or below the same cut point for the 5th and 10th percentile and those that were at or above the cut point for the 90th and 95th percentile. If there are a large number of students below the 5th and 10th percentile of the non-disrupted group than what would be expected (5% and 10%, respectively) then more students in the disrupted group scored lower than expected. On the other hand, if there are a large number of students above the 90th and

95th percentile of the non-disrupted group (10% and 5%, respectively) then more students in the disrupted group scored higher than expected. Either case would provide evidence that the computer disruption had an impact on scores. Table 9 presents the percent of students in the disrupted group with score differences less than the 5th and 10th percentile and higher than the 90th and 95th percentile of the non-disrupted group.

Table 8. Distribution of the Difference between Predicted and Observed Scores for Non-disrupted and Disrupted Groups – Cohort A

				Disr	upted						Non-D	isrupted		
	Ν	Mean	SD	5th	10th	90th	95th	Ν	Mean	SD	5th	10th	90th	95th
Grade 6 Reading														
Difference	2002	1.81	52.02	-73.94	-55.14	59.77	84.53	2002	0.00	47.36	-71.02	-52.14	56.69	78.04
Predicted Score	2002	731.94	61.38	634.72	660.52	805.18	826.03	2002	731.95	56.65	642.62	665.18	801.51	821.08
Observed Score	2002	733.75	77.87	613	639	833	860	2002	731.95	73.84	613	639	813	860
Grade 7 Reading														
Difference	1625	-3.87	46.91	-77.33	-58.60	49.90	67.02	1625	-0.07	46.01	-63.31	-48.98	50.19	74.55
Predicted Score	1625	728.44	51.25	645.67	667.32	788.63	806.22	1625	726.45	51.02	644.46	666.61	784.50	801.89
Observed Score	1625	724.56	66.99	621	650	797	849	1625	726.38	68.69	621	644	797	849
Grade 8 Reading														
Difference	1900	-0.64	58.57	-88.05	-68.67	68.58	98.49	1900	0.08	55.94	-86.26	-65.72	67.76	104.63
Predicted Score	1900	758.45	55.38	670.25	690.90	823.10	845.99	1900	758.57	55.23	670.35	692.53	822.76	843.49
Observed Score	1900	757.81	84.37	623	652.5	842	909	1900	758.65	78.62	630	658	842	909
Grade 6 Math														
Difference	1710	2.97	51.22	-72.99	-54.18	58.81	83.88	1710	0.04	48.37	-73.80	-53.87	59.80	80.12
Predicted Score	1710	741.94	61.18	649.31	671.46	815.01	841.66	1710	743.58	57.64	649.82	676.08	813.13	834.56
Observed Score	1710	744.91	77.77	622	651	833	865	1710	743.62	75.24	622	651	830	865
Grade 7 Math														
Difference	1085	-2.92	58.45	-89.32	-61.70	59.89	76.58	1085	0.00	52.70	-76.44	-57.62	56.04	73.67
Predicted Score	1085	729.39	64.43	623.49	654.87	802.54	828.87	1085	730.80	61.49	636.73	655.83	800.52	822.44
Observed Score	1085	726.46	84.46	605	629	827	852	1085	730.80	80.98	605	639	827	852
Grade 8 Math														
Difference	1533	-3.94	57.72	-89.46	-69.96	62.50	87.98	1533	0.01	57.97	-86.19	-66.31	68.29	95.63
Predicted Score	1533	731.72	57.56	636.86	666.24	800.67	824.81	1533	732.02	63.64	627.90	656.37	809.02	831.84
Observed Score	1533	727.78	79.72	602	632	816	854	1533	732.02	86.09	602	632	830	866

Note. Bolded values indicate significantly larger standard deviation for Disrupted group at p < .05.

Compare predictions for interrupted students to non-interrupted students

Table 9. Percent of Disrupted Students with Predicted and Observed Score Differences at the 5th, 10th, 90th and 95th Percentile of Non-disrupted Students – Cohort A

		5th	10th	90th	95th
	N		5% or 10% = antaged	Larger than 5 Advan	
Grade 6 Reading	2,002	5.29%	11.24%	10.94%	5.89%
Grade 7 Reading	1,625	8.74%	13.48%	9.97%	3.75%
Grade 8 Reading	1,900	5.32%	11.00%	10.05%	4.63%
Grade 6 Math	1,710	4.85%	10.23%	9.82%	5.79%
Grade 7 Math	1,085	6.54%	11.43%	11.24%	5.81%
Grade 8 Math	1,533	5.54%	11.02%	8.61%	3.78%

For Reading, the results show a slightly higher percent of students above the 5th and 10th cut point for grade 7. These results suggest that for grade 7 Reading, approximately 3.74% of students had lower observed scores than predicted scores based on the non-disrupted sample. In Math, the differences around the 5th and 10th percentiles were less pronounced, although the actual percentages did bounce around what would be expected.

On the upper end of the distribution, it can be noted that some students in the disrupted group scored higher than what would be expected. For example, some students in the disrupted sample scored high in Grade 7 Math than what was expected, but there were other students in this same group that were disadvantaged.

Cohort B Analyses

Because the disruptions on 4/29 and 4/30 appeared to be more pronounced, the above analyses were replicated using *only students disrupted on 4/29 and 4/30* as the disrupted sample. In this way, any effect of disruption, on average, may be more pronounced on this sample than by looking at students disrupted on any day.

Table 10. Cohort A and Cohort B Comparison

		Math		Reading			
Grade	Cohort A	Cohort B	Proportion of Cohort A	Cohort A	Cohort B	Proportion of Cohort A	
6	2,068	753	0.36	2,339	577	0.25	
7	1,348	588	0.44	1,906	442	0.23	
8	1,819	1,103	0.61	2,255	648	0.29	
Total	5,235	2,444		6,500	1,667		

Interestingly, the proportions of students in Cohort A who are also in Cohort B vary by grade and subject. Grade 8 Math students appear to have primarily been interrupted on 4/29 or 4/30.

Propensity score matching was again used to match the reduced sample of disrupted students to similar students in the non-disrupted group. The same four analyses conducted on Cohort A were also conducted on Cohort B.

Differences in average 2013 test scores

Table 11. Descriptive and Inferential Statistics of 2013 Test Scores After Matching - Cohort B

		Disru	Disrupted		srupted		
	Ν	Mean	SD	Mean	SD	t	d
Grade 6 Reading	468	756.3	82.39	750.2	77.78	-1.16	0.08
Grade 7 Reading	617	743.2	78.27	744.9	74.07	0.39	-0.02
Grade 8 Reading	369	726.7	73.87	726.1	67.22	-0.12	0.01
Grade 6 Math	455	728.5	89.21	726.8	72.02	-0.33	0.02
Grade 7 Math	543	755.5	93.14	762.5	86.29	1.28	-0.08
Grade 8 Math	932	719.5	81.63	729.0	86.01	2.44*	-0.11

^{*} p < .05.

Mean scores between the matched disrupted and non-disrupted students were neither statistically nor practically significant except for Grade 8 Math. Although the mean score of disrupted students was lower than the non-disrupted students at a statistical level, the practical significance was still small. Additionally, with 932 students in both samples, the power of this statistical test is very high so even a small difference may be statistically significant.

Examining the predictability of 2013 test scores

Regression equations were formed using the same predictor variables as in Cohort A. Again, one regression combined the disrupted and non-disrupted groups to examine the increase in predictive validity when adding "disruption" to the equation. Overall, the changes in R² values were very small.

Table 12. Combined Regression Equation Adding Disruption – Cohort B

	N	Covariates Only R ²	Covariates + Disrupted R ²	ΔR^2
Grade 6 Reading	936	0.6005	0.6009	<0.001
Grade 7 Reading	738	0.5319	0.5321	<0.001
Grade 8 Reading	1,086	0.5444	0.5444	<0.001
Grade 6 Math	1,234	0.5292	0.5293	<0.001
Grade 7 Math	910	0.4892	0.4894	<0.001
Grade 8 Math	1,864	0.5051	0.5080	0.003

Like Cohort A, two more regression equations were built to predict 2013 scores from the same predictor variables in the previous model. These models were run on both groups separately to examine if the difference in R² was substantively smaller in the disrupted group than the non-disrupted group. This may signal unexplained variance possibly attributable to a disruption effect. The R² values were smaller only in the Grade 8 Math exam, although this change is small, accounting for about 1% of variance explained.

Table 13. Separate Regression Equations for Disrupted and Non-Disrupted Groups – Cohort B

	Ν	Disrupted R ²	Non-Disrupted R ²	ΔR^2
Grade 6 Reading	468	0.619	0.604	0.015
Grade 7 Reading	369	0.555	0.532	0.024
Grade 8 Reading	543	0.574	0.530	0.045
Grade 6 Math	617	0.534	0.534	<0.000
Grade 7 Math	455	0.504	0.498	0.006
Grade 8 Math	932	0.461	0.560	-0.099

Examining distributions of predicted student scores

By looking at the distribution of difference scores (i.e., observed minus predicted scores), we can determine, as best as our models predict, the scores students who were disrupted would have received if they were not disrupted. Given that Cohort B is a refined sample of Cohort A, any "notable difference" or effect of disruption could be expected to be more extreme in this sample.

An *F*-test was conducted comparing the variance of observed, predicted, and difference scores, of both groups. The significantly larger standard deviations for the disrupted group are bolded in Table 14. Interestingly, the Grade 8 Math disrupted group did not have statistically significantly larger variance than its matched non-disrupted group.

Table 14. Distribution of the Difference between Predicted and Observed Scores for Non-disrupted and Disrupted Groups – Cohort B

				Disru	upted						Non-D	isrupted		
	Ν	Mean	SD	5th	10th	90th	95th	Ν	Mean	SD	5th	10th	90th	95th
Grade 6 Reading														
Difference	468	3.28	53.38	-87.02	-58.63	60.40	89.60	468	0.00	48.97	-69.55	-53.25	62.78	81.71
Predicted Score	468	753.03	53.73	659.27	684.55	820.58	838.81	468	750.23	60.43	653.23	678.31	829.04	849.02
Observed Score	468	756.31	82.39	619	659	862	894	468	750.23	77.78	633	652	833	860
Grade 7 Reading														
Difference	369	-1.86	51.87	-86.94	-63.94	51.56	71.41	369	-0.01	46.01	-65.14	-53.04	55.97	79.64
Predicted Score	369	728.55	47.56	649.69	668.17	785.31	799.94	369	726.09	49.01	646.52	665.73	781.42	797.76
Observed Score	369	726.69	73.87	593	633	818	849	369	726.08	67.22	621	650	797	849
Grade 8 Reading														
Difference	543	-1.92	63.31	-100.42	-70.16	71.13	98.62	543	-0.03	59.18	-86.42	-65.67	75.25	108.75
Predicted Score	543	757.46	66.52	639.76	672.18	837.02	865.69	543	762.54	62.79	666.74	691.77	837.14	858.30
Observed Score	543	755.53	93.14	591	637	870	909	543	762.51	86.29	623	658	870	909
Grade 6 Math														
Difference	617	0.04	50.59	-75.67	-57.21	57.35	81.22	617	1.69	54.40	-73.58	-60.63	60.76	84.91
Predicted Score	617	744.82	54.10	654.18	679.22	809.00	825.66	617	741.46	59.81	655.87	672.37	807.55	839.04
Observed Score	617	744.86	74.07	622	659	830	865	617	743.15	78.27	632	651	830	865
Grade 7 Math														
Difference	455	-0.94	65.38	-110.29	-66.03	71.21	81.95	455	-0.04	51.00	-79.98	-59.48	53.93	78.50
Predicted Score	455	729.48	53.50	637.79	659.40	791.01	812.24	455	726.81	50.85	646.49	670.06	784.81	799.42
Observed Score	455	728.54	89.21	597	639	827	852	455	726.76	72.02	618	648	807	838
Grade 8 Math														
Difference	932	-8.80	61.36	-99.62	-77.95	60.03	87.78	932	0.02	57.07	-86.13	-61.29	67.03	93.85
Predicted Score	932	728.32	55.36	638.45	667.91	790.78	811.54	932	728.98	64.35	622.63	652.67	802.95	825.13
Observed Score	932	719.52	81.63	588	623	816	846	932	729.00	86.01	589	623	830	866

Note. Bolded values indicate significantly larger standard deviation for Disrupted group at p < .05.

Compare predictions for interrupted students to non-interrupted students

Table 15. Percent of Disrupted Students with Predicted and Observed Score Differences at the 5th, 10th, 90th and 95th Percentile of Non-disrupted Students – Cohort B

		5th	10th	90th	95th	
	N		5% or 10% = antaged	Larger than 5% or 10% = Advantaged		
Grade 6 Reading	468	8.55%	11.97%	9.40%	6.62%	
Grade 7 Reading	369	9.76%	13.55%	8.13%	4.07%	
Grade 8 Reading	543	6.81%	12.52%	8.84%	4.05%	
Grade 6 Math	617	4.70%	10.86%	11.02%	5.67%	
Grade 7 Math	455	7.47%	11.43%	16.04%	6.15%	
Grade 8 Math	932	6.97%	14.81%	8.80%	4.08%	

According to Table 15, some disrupted students scored lower than expected whereas others scored higher than expected. The largest group of disadvantaged students appears to be Grade 8 Math at the 10th percentile mark; however, other groups have larger proportions of students at the 5th percentile mark.

Cohort C Analyses

In addition to the interruptions in Grades 6 through 8 exams, HumRRO was provided student scores and interruption data for EOI exams. These exams are primarily completed by high school students and are often taken predominantly in one grade level. This is relevant in selecting variables to predict the current year scores. Since prior performance is the best predictor of future performance, this fact limited our investigation to certain exams with available prior performance data.

Algebra I test scores were selected for Cohort C because most students who complete that exam are 9th graders and their Grade 8 Math exam is available as a sufficient indicator of prior performance. However, some 7th and 8th graders also completed the Algebra 2013 test. These students also completed their Math exams in 2013 and 2012, which can be used as prior performance indicators. Given that these students are likely advanced in this subject (i.e., upper end of the ability distribution), we can examine these students separately to determine if disruption had a differential effect on higher ability students.

To be clear, Cohort C is comprised of students who completed the Algebra I test in 2013 matched with 2012 Math scores; therefore, this sample should consist primarily of students who were 9th graders in spring 2013. The same 2013 Algebra I scores were matched to 2013 Math scores to result in a sample that primarily consists of students who were 7th and 8th graders in spring 2013. The same interruption data on the Algebra I test was used for both groups. The number of valid, unique Algebra I score records is 31,021; however, grade information was only provided in the interruption file. The number of interrupted cases during the 2013 Algebra I test by grade is displayed in Table 16.

Table 16. Interrupted Cases on 2013 Algebra I

Test by Grade

Tool by Glade		
	Ν	Percentage
Grade 7	59	2.07%
Grade 8	602	21.08%
Grade 9	1,759	61.59%
Grade 10	347	12.15%
Grade 11	72	2.52%
Grade 12	17	0.60%
Total	2,856	100%

Note that only the Grades 7 and 8 records from the interruption file were matched with the 2013 Algebra I score file to form the subset "2013 Algebra (7th & 8th)." All analyses were conducted on all groups after propensity score matching. The matching formulas were identical for Cohort C; however, Math 2013 scores were used for the grades 7 and 8 subset.

Differences in average 2013 test scores

After propensity score matching, mean difference tests were performed on the matched samples. Note that the performance of the 7th and 8th grade group is higher than the group overall. Additionally, both Disrupted samples seem to have lower scores than the Non-Disrupted matched samples, overall.

Table 17. Descriptive and Inferential Statistics of 2013 Test Scores After Matching – Cohort C

		Disrupted		Non-Di	srupted	_	
	Ν	Mean	SD	Mean	SD	t	d
2013 Algebra	2,179	739.5	50.17	744.7	49.41	3.40*	0.10
2013 Algebra (7 th & 8 th)	621	763.5	55.45	771.5	48.81	2.70*	0.15

^{*}p < .05.

Examining the predictability of 2013 test scores

The regression equations were performed on both groups in Cohort C. R² values were lower for the 2013 Algebra group likely due to only Math 2012 scores being available for a prior performance indicator. Including Math and Reading 2013 scores would have reduced the sample to the 7th and 8th grade group since 9th graders likely did not complete the 2013 Math and Reading tests meant for 8th graders. Importantly, the change in R² values were not practically large, indicating a near-zero effect of disruption on Algebra score variance.

Table 18. Combined Regression Equation Adding Disruption – Cohort C

		Covariates Only	Covariates +	
	Ν	R ²	Disrupted R ²	ΔR^2
2013 Algebra	4,358	0.3445	0.3460	-0.002
2013 Algebra (7 th & 8 th)	621	0.5553	0.5587	-0.003

The separate regression equations indicated less variance explained in the Disrupted group than the Non-Disrupted group by about 2 or 3%. Although this difference is likely practically small, it is in the direction of concern. Further analyses may signal a consistent disadvantage in one of the Cohort C groups.

Table 19. Separate Regression Equations for Disrupted and Non-Disrupted Groups – Cohort C

	Ν	Disrupted R ²	Non-Disrupted R ²	ΔR^2
2013 Algebra	2,179	0.332	0.360	-0.029
2013 Algebra (7 th & 8 th)	621	0.557	0.577	-0.021

Examining distributions of predicted student scores

The distributions of observed, predicted, and difference scores were examined for Cohort C focusing on the 7th and 8th grade students who were at the higher end of the ability distribution. The *F*-tests to compare the variances of the scores between the groups was again conducted. Those results may be found in Table 20.

The 7th and 8th grade group had a statistically significantly larger variance in difference scores for the Disrupted group than the Non-Disrupted group. This result foreshadows larger proportions of students below (and perhaps above) the percentile cuts.

Table 20. Distribution of the Difference between Predicted and Observed Scores for Non-disrupted and Disrupted Groups - Cohort C

			Disrupted								Non-D	isrupted		
	Ν	Mean	SD	5th	10th	90th	95th	Ν	Mean	SD	5th	10th	90th	95th
Algebra														
Difference	2179	-3.77	41.22	-58.05	-44.34	37.99	54.30	2179	-0.03	39.51	-56.61	-42.93	42.08	54.70
Predicted Score	2179	743.32	29.03	706.32	717.52	775.22	785.03	2179	744.71	29.66	704.66	716.15	777.28	787.29
Observed Score	2179	739.55	50.17	670	687	793	815	2179	744.67	49.41	670	687	798	826
Algebra (7th & 8th)														
Difference	621	-6.02	38.20	-52.27	-39.94	32.08	51.54	621	0.01	31.74	-41.43	-32.17	32.84	44.01
Predicted Score	621	769.52	38.77	705.60	723.70	816.70	843.30	621	771.49	37.08	714.00	730.40	818.90	838.10
Observed Score	621	763.50	55.45	691	704	826	843	621	771.51	48.81	708	722	826	842

Note. Bolded values indicate significantly larger standard deviation for Disrupted group at p < .05.

Compare predictions for interrupted students to non-interrupted students

Table 21. Percent of Disrupted Students with Predicted and Observed Score Differences at the 5th, 10th, 90th and 95th Percentile of Non-disrupted Students – Cohort C

		5th	10th	90th	95th	
		Larger than	5% or 10% =	Larger than 5% or 10% =		
	Ν	Disadv	rantaged	Advantaged		
2013 Algebra	2,179	5.42	10.65	8.08	4.91	
2013 Algebra (7 th & 8 th)	621	9.34	17.07	9.66	6.60	

Table 21 contains the percentages of students in the Disrupted group above or below the percentile cuts of the Non-Disrupted Students. The 7th and 8th grade students who were interrupted while completing the Algebra I test in 2013 were proportionately more disadvantaged than advantaged. In other words, it appears that 7th and 8th grade students were differentially affected by interruption, on average, than others completing the same exam.

Cohort D Analyses

Another set of students completing an EOI test was examined. The English II test was chosen due to the available data in the EOI dataset. A measure of prior performance was desired for creating the matched sample. However, because students typically take the English II test in Grade 10, the nearest other assessment where most students also had scores was the US History EOI. Using the US History EOI was not a perfect solution, however. The content was obviously different, but highly correlated. The bigger issue was that not all English II EOI interrupted student also had a US History score.

After examining the students who were disrupted on the English II test who had US History test scores, another approach was developed to increase the sample size. More data was provided to HumRRO that enabled us to use 2011 reading test scores (from when the Grade 10 student were in Grade 8) as a prior performance indicator. This approach increased the sample size of non-disrupted students and provided an improved prediction model for the 2013 English II scores. Therefore, both groups are presented as Cohort D, much like Cohort C had two groups focused on the same exam.

For clarity, "2013 English Group 1" is all students who had US History exam scores as a "prior performance" indicator and "2013 English Group 2" is all students who had 2011 Reading scores as a predictor of performance. The prediction models differed primarily in these variables. Group 2 also included 2011 Math scores since the data was available for nearly every student.

Differences in average 2013 test scores

After propensity score matching, mean difference tests were performed on the matched samples. Disrupted students in Group 1 did better than matched Non-Disrupted students; however, this difference was neither statistically nor practically different. Group 2 mean difference was in the opposite direction, but this was also non-significant and small.

Table 22. Descriptive and Inferential Statistics of 2013 Test Scores After Matching - Cohort D

		Disrupted		Non-Di	srupted	_	
	N	Mean	SD	Mean	SD	t	d
2013 English Group 1	427	748.4	74.80	746.1	73.47	-0.44	-0.03
2013 English Group 2	2,688	763.6	64.10	765.2	67.92	0.93	0.03

Note. No *p*-values below .05.

Examining the predictability of 2013 test scores

The regression equations were performed on both groups in Cohort D. R² values were lower for the Group 2 equations because the 2011 scores were not a recent test score, limiting the predictive power. However, for both groups, the "Disrupted" dichotomous variable does not additionally explain a practically large amount of English II test score variance.

Table 23. Combined Regression Equation Adding Disruption – Cohort D

		Covariates Only	Covariates +	
	N	R^2	Disrupted R ²	ΔR^2
2013 English Group 1	854	0.5187	0.5188	<0.001
2013 English Group 2	5,376	0.3503	0.3504	<0.001

The separate regression equations indicated *more* variance explained in the Disrupted group than the Non-Disrupted group in the Group 1 analyses, with a difference of about 4%. This is not a large difference and is of less concern that if Disrupted students had less variance explained. The difference in Group 2 equations is practically very small.

Table 24. Separate Regression Equations for Disrupted and Non-Disrupted Groups – Cohort D

	N	Disrupted R ²	Non-Disrupted R ²	ΔR^2
2013 English Group 1	427	0.545	0.503	0.042
2013 English Group 2	2,688	0.351	0.354	-0.003

Examining distributions of predicted student scores

The distributions of observed, predicted, and difference scores were examined for Cohort D and the *F*-tests to compare the variances of the scores between the groups were again conducted. Those results may be found in Table 25. Only one variable had larger variance for the Disrupted group at a significant level.

Table 25. Distribution of the Difference between Predicted and Observed Scores for Non-disrupted and Disrupted Groups – Cohort D

			Disrupted						Non-Disrupted					
	N	Mean	SD	5th	10th	90th	95th	Ν	Mean	SD	5th	10th	90th	95th
English Group 1														
Difference	427	1.26	51.41	-77.54	-54.29	57.77	74.86	427	-0.04	51.82	-87.26	-59.88	60.36	79.94
Predicted Score	427	747.09	52.14	653.61	683.34	814.11	834.58	427	746.15	52.09	655.99	680.26	817.72	834.51
Observed Score	427	748.36	74.80	615	656	838	859	427	746.11	73.47	622	656	838	864
English Group 2														
Difference	2688	-1.78	52.00	-80.89	-61.72	60.27	80.57	2688	-0.05	55.00	-82.57	-60.67	59.01	80.11
Predicted Score	2688	765.34	43.00	704.70	725.90	808.70	822.30	2688	765.29	40.00	709.20	724.60	807.50	821.90
Observed Score	2688	763.56	64.00	662	693	838	864	2688	765.24	68.00	654	687	840	859

Note. Bolded values indicate significantly larger standard deviation for Disrupted group at p < .05.

Compare predictions for interrupted students to non-interrupted students

Table 26. Percent of Disrupted Students with Predicted and Observed Score Differences at the 5th, 10th, 90th and 95th Percentile of Non-disrupted Students – Cohort D

		5th	10th	90th	95th	
		Larger than	5% or 10% =	Larger than 5% or 10% =		
	Ν	Disadv	/antaged	Advantaged		
2013 English Group 1	427	3.75	8.20	9.84	3.75	
2013 English Group 2	2,688	4.84	10.27	10.42	5.21	

The percentages of students in the Disrupted group beyond the cutoff of the Non-Disrupted group are provided in Table 26. It seems that fewer students were both advantaged and disadvantaged in Group 1, but these differences do not appear large. The percentages for Group 2 are very close to the expected values and there appear to be no strong directional concerns.

Summary

This report provides a statistical investigation of computer disruptions on student test scores. A number of analyses were conducted on many groups of students completing different tests to investigate whether computer disruptions impacted scores. The only group that seemed to be disadvantaged was the 7th and 8th graders completing the Algebra I test, and the disadvantage was not consistent throughout the distribution of student scores. These differences rely on the predictability of the model, which is inherently imperfect. While there is some evidence to suggest that there were effects from the disruption, nothing emerged in a systematic way across grades, subjects, or methodologies that merit a statistical adjustment. While we cannot know for an individual student that the computer disruption did not impact his or her test score, we conclude that for the overall population of Oklahoma students the computer disruptions had little impact on student test scores.

References

- Austin, P. C. (2009). Some methods of propensity-score matching had superior performance to others: Results of an empirical investigation and Monte Carlo simulation. *Biometrical Journal*, *51*, 171-184. doi: 10.1002/bimj.200810488
- Connelly, B. S., Sackett, P.R., & Waters, S. D. (2013). Balancing treatment and control groups in quasi-experiments: An Introduction to propensity scoring. *Personnel Psychology*, *66*, 407-442. doi: 10.1111/peps.12020
- Harder, V. S., Stuart, E. A., & Anthony, J. C. (2010). Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research. *Psychological Methods*, *15*(3), 234-249. doi: 10.1037/a0019623
- Hill, R. (2013). An analysis of the Impact of Interruptions on the 2013 administration of the Indiana Statewide Testing for Educational Progress—Plus (ISTEP+). The National Center for the Improvement of Educational Assessment, Inc. Downloaded July 28, 2013 from http://www.doe.in.gov/sites/default/files/news/hill-report.pdf.

Appendix

Mean Differences between Non-Disrupted and Disrupted Samples before and after Propensity Matching

Table A1. Mean Covariate Differences for Grade 6 Reading – Cohort A

Table A1. Mean Covariate Differences for Grade 6 Reading – Conort A											
			Before I	Matching							
	No	n-Disrupt	ted		Disrupted						
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d				
2013 Math Scale	737.90	78.11	40872	734.47	82.55	2283	0.043				
2012 Math Scale	742.12	99.21	38109	736.55	97.65	2145	0.057				
2012 Reading Scale	732.91	95.92	38012	726.85	101.34	2136	0.062				
School Free-Lunch	0.56	0.20	38896	0.58	0.19	2161	-0.088				
School Achievement	738.61	26.44	38896	736.18	27.10	2161	0.091				
African American	0.11	0.31	41444	0.15	0.35	2317	-0.117				
American Indian	0.23	0.42	41444	0.21	0.41	2317	0.043				
Asian	0.02	0.16	41444	0.03	0.17	2317	-0.034				
Hispanic	0.14	0.34	41442	0.14	0.34	2317	0.005				
Pacific Islander	0.01	0.07	41444	0.01	0.07	2317	0.000				
Caucasian	0.70	0.46	41444	0.68	0.47	2317	0.044				
Male	0.50	0.50	41428	0.50	0.50	2314	0.011				
			After M	latching							
	No	n-Disrupt	ted								
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d				
2042 Math Caala	707.00	75.00	2002	700.00	70.00	2002	0.000				

	Non-Disrupted			Disrupted			
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Math Scale	737.68	75.80	2002	739.20	79.82	2002	-0.020
2012 Math Scale	740.15	93.20	2002	739.21	95.92	2002	0.010
2012 Reading Scale	731.14	87.70	2002	729.53	98.76	2002	0.017
School Free-Lunch	0.59	0.20	2002	0.58	0.19	2002	0.023
School Achievement	736.03	26.64	2002	736.34	26.95	2002	-0.012
African American	0.15	0.36	2002	0.15	0.36	2002	0.011
American Indian	0.21	0.41	2002	0.21	0.41	2002	-0.007
Asian	0.02	0.15	2002	0.03	0.17	2002	-0.042
Hispanic	0.13	0.34	2002	0.14	0.34	2002	-0.016
Pacific Islander	0.01	80.0	2002	0.01	0.07	2002	0.013
Caucasian	0.68	0.47	2002	0.68	0.47	2002	-0.014
Male	0.48	0.50	2002	0.49	0.50	2002	-0.015

Note. Bolded values indicate Cohen's d greater than .10 or -.10.

Table A2. Mean Covariate Differences for Grade 6 Math – Cohort A

		Before Matching								
	N	on-Disrup	oted		Disrupte	d	-			
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d			
2013 Reading Scale	731.49	77.29	41178	732.79	82.16	1977	-0.016			
2012 Math Scale	741.98	98.90	38635	736.42	94.67	1857	0.057			
2012 Reading Scale	732.71	96.48	38153	731.60	90.90	1833	0.012			
School Free-Lunch	0.57	0.20	39992	0.57	0.17	1896	-0.044			
School Achievement	737.76	26.56	39992	738.05	24.20	1896	-0.011			
African American	0.11	0.31	41965	0.16	0.36	2011	-0.152			
American Indian	0.22	0.42	41965	0.22	0.41	2011	0.018			
Asian	0.02	0.16	41965	0.04	0.19	2011	-0.067			
Hispanic	0.14	0.35	41964	0.14	0.35	2011	-0.014			
Pacific Islander	0.01	0.07	41965	0.00	0.07	2011	0.013			
Caucasian	0.70	0.46	41965	0.66	0.47	2011	0.083			
Male	0.50	0.50	41864	0.48	0.50	2011	0.050			
·			After N	/latching						

	N	on-Disrup	oted		Disrupte	d	
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Reading Scale	739.53	75.52	1710	738.15	79.91	1710	0.018
2012 Math Scale	742.62	92.83	1710	739.51	94.26	1710	0.033
2012 Reading Scale	736.69	89.18	1710	733.03	91.75	1710	0.041
School Free-Lunch	0.57	0.20	1710	0.57	0.17	1710	-0.002
School Achievement	738.20	25.85	1710	738.25	23.42	1710	-0.002
African American	0.16	0.37	1710	0.16	0.37	1710	0.000
American Indian	0.22	0.41	1710	0.21	0.41	1710	0.017
Asian	0.04	0.19	1710	0.04	0.19	1710	0.000
Hispanic	0.15	0.36	1710	0.15	0.35	1710	0.020
Pacific Islander	0.00	0.03	1710	0.00	0.06	1710	-0.060
Caucasian	0.66	0.47	1710	0.66	0.47	1710	-0.006
Male	0.49	0.50	1710	0.48	0.50	1710	0.033

Table A3. Mean Covariate Differences for Grade 7 Reading – Cohort A

		Before Matching								
	N	on-Disrup	oted		Disrupted					
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d			
2013 Math Scale	733.18	80.19	41134	723.82	85.05	1847	0.113			
2012 Math Scale	733.69	95.85	38422	723.88	102.50	1732	0.099			
2012 Reading Scale	729.60	96.57	38486	719.00	102.50	1731	0.106			
School Free-Lunch	0.55	0.19	39075	0.56	0.18	1765	-0.043			
School Achievement	732.65	23.81	39056	728.23	25.35	1764	0.180			
African American	0.11	0.31	41815	0.16	0.36	1887	-0.129			
American Indian	0.23	0.42	41815	0.21	0.41	1887	0.030			
Asian	0.02	0.15	41815	0.02	0.15	1887	0.000			
Hispanic	0.13	0.34	41813	0.12	0.32	1887	0.046			
Pacific Islander	0.00	0.06	41815	0.01	80.0	1887	-0.029			
Caucasian	0.69	0.46	41815	0.67	0.47	1887	0.048			
Male	0.50	0.50	41799	0.50	0.50	1886	0.008			
			After N	10tobina						

	N	on-Disrup	ted		Disrupted	1	
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Math Scale	724.80	77.89	1625	728.01	82.05	1625	-0.040
2012 Math Scale	721.00	102.66	1625	724.99	102.34	1625	-0.039
2012 Reading Scale	716.65	109.24	1625	719.01	103.90	1625	-0.022
School Free-Lunch	0.56	0.19	1625	0.55	0.18	1625	0.038
School Achievement	728.14	24.37	1625	728.30	25.57	1625	-0.006
African American	0.16	0.37	1625	0.15	0.36	1625	0.024
American Indian	0.22	0.41	1625	0.21	0.41	1625	0.019
Asian	0.03	0.17	1625	0.02	0.15	1625	0.027
Hispanic	0.12	0.32	1625	0.12	0.32	1625	-0.004
Pacific Islander	0.01	0.07	1625	0.01	0.08	1625	-0.016
Caucasian	0.66	0.47	1625	0.67	0.47	1625	-0.030
Male	0.50	0.50	1625	0.49	0.50	1625	0.033

Table A4. Mean Covariate Differences for Grade 7 Math – Cohort A

		Before Matching								
	N	on-Disrup	oted							
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d			
2013 Reading Scale	730.70	67.27	41702	721.07	74.39	1276	0.136			
2012 Math Scale	733.52	95.92	39121	721.55	103.24	1191	0.120			
2012 Reading Scale	729.45	97.02	38842	720.16	99.00	1169	0.095			
School Free-Lunch	0.55	0.19	40363	0.60	0.16	1227	-0.290			
School Achievement	731.88	23.93	40343	725.46	25.27	1227	0.261			
African American	0.11	0.31	42421	0.16	0.36	1307	-0.136			
American Indian	0.23	0.42	42421	0.23	0.42	1307	-0.003			
Asian	0.02	0.15	42421	0.02	0.13	1307	0.042			
Hispanic	0.13	0.34	42421	0.17	0.37	1307	-0.099			
Pacific Islander	0.00	0.07	42421	0.01	0.07	1307	-0.016			
Caucasian	0.69	0.46	42421	0.66	0.47	1307	0.060			
Male	0.50	0.50	42408	0.51	0.50	1306	-0.018			

	N	on-Disrup	oted		Disrupted	ł	
	Mean	SD	Ν	Mean	SD	N	Cohen's d
2013 Reading Scale	729.50	68.49	1085	727.81	71.04	1085	0.024
2012 Math Scale	727.52	92.31	1085	724.73	100.98	1085	0.029
2012 Reading Scale	725.59	97.65	1085	722.12	96.18	1085	0.036
School Free-Lunch	0.60	0.18	1085	0.61	0.16	1085	-0.054
School Achievement	724.77	24.25	1085	725.15	25.27	1085	-0.015
African American	0.18	0.38	1085	0.17	0.37	1085	0.022
American Indian	0.20	0.40	1085	0.22	0.41	1085	-0.043
Asian	0.02	0.15	1085	0.02	0.14	1085	0.032
Hispanic	0.20	0.40	1085	0.18	0.38	1085	0.075
Pacific Islander	0.00	0.06	1085	0.00	0.07	1085	-0.014
Caucasian	0.66	0.47	1085	0.65	0.48	1085	0.021
Male	0.49	0.50	1085	0.50	0.50	1085	-0.011

Table A5. Mean Covariate Differences for Grade 8 Reading – Cohort A

	Before Matching								
N	on-Disrup	oted							
Mean	SD	Ν	Mean	SD	Ν	Cohen's d			
731.00	83.07	39830	732.46	87.45	2189	-0.017			
734.49	97.70	37151	732.62	94.76	2041	0.019			
737.40	91.04	37350	733.56	95.21	2048	0.041			
0.52	0.20	37910	0.54	0.18	2070	-0.102			
736.91	24.41	37910	734.38	23.52	2070	0.106			
0.11	0.31	40681	0.15	0.35	2229	-0.105			
0.22	0.42	40681	0.21	0.41	2229	0.034			
0.02	0.15	40681	0.02	0.15	2229	0.006			
0.13	0.33	40679	0.14	0.34	2228	-0.037			
0.00	0.07	40681	0.01	0.08	2229	-0.027			
0.70	0.46	40681	0.68	0.47	2229	0.041			
0.50	0.50	40654	0.50	0.50	2228	-0.001			
	Mean 731.00 734.49 737.40 0.52 736.91 0.11 0.22 0.02 0.13 0.00 0.70	Mean SD 731.00 83.07 734.49 97.70 737.40 91.04 0.52 0.20 736.91 24.41 0.11 0.31 0.22 0.42 0.02 0.15 0.13 0.33 0.00 0.07 0.70 0.46	Non-Disrupted Mean SD N 731.00 83.07 39830 734.49 97.70 37151 737.40 91.04 37350 0.52 0.20 37910 736.91 24.41 37910 0.11 0.31 40681 0.22 0.42 40681 0.02 0.15 40681 0.13 0.33 40679 0.00 0.07 40681 0.70 0.46 40681	Mean SD N Mean 731.00 83.07 39830 732.46 734.49 97.70 37151 732.62 737.40 91.04 37350 733.56 0.52 0.20 37910 0.54 736.91 24.41 37910 734.38 0.11 0.31 40681 0.15 0.22 0.42 40681 0.21 0.02 0.15 40681 0.02 0.13 0.33 40679 0.14 0.00 0.07 40681 0.01 0.70 0.46 40681 0.68	Non-Disrupted Disrupted Mean SD N Mean SD 731.00 83.07 39830 732.46 87.45 734.49 97.70 37151 732.62 94.76 737.40 91.04 37350 733.56 95.21 0.52 0.20 37910 0.54 0.18 736.91 24.41 37910 734.38 23.52 0.11 0.31 40681 0.15 0.35 0.22 0.42 40681 0.21 0.41 0.02 0.15 40681 0.02 0.15 0.13 0.33 40679 0.14 0.34 0.00 0.07 40681 0.01 0.08 0.70 0.46 40681 0.68 0.47	Non-Disrupted Disrupted Mean SD N Mean SD N 731.00 83.07 39830 732.46 87.45 2189 734.49 97.70 37151 732.62 94.76 2041 737.40 91.04 37350 733.56 95.21 2048 0.52 0.20 37910 0.54 0.18 2070 736.91 24.41 37910 734.38 23.52 2070 0.11 0.31 40681 0.15 0.35 2229 0.22 0.42 40681 0.21 0.41 2229 0.02 0.15 40681 0.02 0.15 2229 0.13 0.33 40679 0.14 0.34 2228 0.00 0.07 40681 0.01 0.08 2229 0.70 0.46 40681 0.68 0.47 2229			

	N	on-Disrup	ted		Disrupte	d	
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Math Scale	738.54	83.13	1900	737.43	86.79	1900	0.013
2012 Math Scale	734.74	106.92	1900	733.75	94.06	1900	0.010
2012 Reading Scale	733.97	103.24	1900	735.68	93.53	1900	-0.017
School Free-Lunch	0.54	0.20	1900	0.54	0.18	1900	0.010
School Achievement	734.67	24.33	1900	734.68	23.68	1900	0.000
African American	0.14	0.35	1900	0.15	0.36	1900	-0.025
American Indian	0.21	0.41	1900	0.21	0.41	1900	0.013
Asian	0.03	0.16	1900	0.02	0.15	1900	0.014
Hispanic	0.15	0.36	1900	0.14	0.34	1900	0.040
Pacific Islander	0.01	0.08	1900	0.01	0.08	1900	-0.007
Caucasian	0.68	0.47	1900	0.67	0.47	1900	0.002
Male	0.49	0.50	1900	0.49	0.50	1900	-0.009

Table A6. Mean Covariate Differences for Grade 8 Math – Cohort A

		Before Matching								
	N	on-Disrup	oted		Disrupte	d	-			
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d			
2013 Reading Scale	750.65	82.08	40262	749.63	79.88	1760	0.013			
2012 Math Scale	734.59	97.70	37628	727.36	96.68	1644	0.074			
2012 Reading Scale	737.67	91.72	37406	731.69	84.76	1632	0.068			
School Free-Lunch	0.53	0.20	38969	0.58	0.19	1694	-0.280			
School Achievement	736.40	24.65	38969	727.38	22.13	1694	0.386			
African American	0.11	0.31	40939	0.14	0.34	1786	-0.083			
American Indian	0.22	0.42	40939	0.19	0.40	1786	0.068			
Asian	0.02	0.15	40939	0.01	0.12	1786	0.071			
Hispanic	0.13	0.33	40939	0.17	0.38	1786	-0.132			
Pacific Islander	0.00	0.07	40939	0.01	0.08	1786	-0.018			
Caucasian	0.69	0.46	40939	0.70	0.46	1786	-0.004			
Male	0.50	0.50	40929	0.49	0.50	1784	0.013			

	N	on-Disrup	ted		Disrupte	d	
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Reading Scale	756.06	83.99	1533	755.45	78.36	1533	0.008
2012 Math Scale	728.61	109.66	1533	728.40	94.36	1533	0.002
2012 Reading Scale	733.60	104.04	1533	733.15	83.63	1533	0.005
School Free-Lunch	0.58	0.19	1533	0.58	0.19	1533	0.022
School Achievement	727.34	23.99	1533	727.22	22.16	1533	0.005
African American	0.15	0.35	1533	0.14	0.35	1533	0.017
American Indian	0.20	0.40	1533	0.19	0.40	1533	0.008
Asian	0.02	0.12	1533	0.02	0.12	1533	-0.005
Hispanic	0.17	0.38	1533	0.18	0.38	1533	-0.014
Pacific Islander	0.01	0.07	1533	0.01	0.07	1533	0.000
Caucasian	0.69	0.46	1533	0.69	0.46	1533	-0.016
Male	0.49	0.50	1533	0.48	0.50	1533	0.014

Table A7. Mean Covariate Differences for Grade 6 Reading – Cohort B

			Before	Matching			
	N	on-Disrup	ted		d	<u></u>	
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Math Scale	737.52	78.25	42606	752.91	84.37	549	-0.189
2012 Math Scale	741.58	99.22	39749	761.13	89.66	505	-0.207
2012 Reading Scale	732.38	96.37	39644	749.29	83.11	504	-0.188
School Free-Lunch	0.56	0.20	40538	0.48	0.22	519	0.419
School Achievement	738.31	26.38	40538	751.51	30.66	519	-0.463
African American	0.11	0.31	43201	0.13	0.34	560	-0.062
American Indian	0.23	0.42	43201	0.17	0.38	560	0.140
Asian	0.02	0.16	43201	0.05	0.21	560	-0.119
Hispanic	0.14	0.34	43199	0.13	0.34	560	0.021
Pacific Islander	0.01	0.07	43201	0.00	0.06	560	0.025
Caucasian	0.69	0.46	43201	0.70	0.46	560	-0.013
Male	0.50	0.50	43185	0.49	0.50	557	0.023

	N	on-Disrup	ted		Disrupte	d	
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Math Scale	757.31	82.91	468	758.79	79.65	468	-0.018
2012 Math Scale	762.20	100.46	468	766.50	83.36	468	-0.047
2012 Reading Scale	746.76	105.49	468	753.35	75.84	468	-0.073
School Free-Lunch	0.48	0.22	468	0.47	0.22	468	0.011
School Achievement	751.82	28.10	468	752.24	30.34	468	-0.014
African American	0.12	0.33	468	0.12	0.33	468	0.000
American Indian	0.17	0.38	468	0.17	0.38	468	0.006
Asian	0.07	0.26	468	0.05	0.22	468	0.081
Hispanic	0.15	0.36	468	0.13	0.34	468	0.067
Pacific Islander	0.00	0.07	468	0.00	0.07	468	0.000
Caucasian	0.71	0.46	468	0.72	0.45	468	-0.028
Male	0.46	0.50	468	0.49	0.50	468	-0.051

Table A8. Mean Covariate Differences for Grade 6 Math – Cohort B

			Before	Matching			
	N	Non-Disrupted			Disrupte		
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Reading Scale	731.54	77.39	42443	732.05	84.63	712	-0.006
2012 Math Scale	741.81	98.78	39827	736.71	94.85	665	0.053
2012 Reading Scale	732.67	96.39	39329	731.86	86.03	657	0.009
School Free-Lunch	0.57	0.20	41208	0.57	0.17	680	-0.023
School Achievement	737.74	26.49	41208	739.33	24.83	680	-0.062
African American	0.11	0.31	43257	0.19	0.40	719	-0.246
American Indian	0.22	0.42	43257	0.21	0.41	719	0.030
Asian	0.03	0.16	43257	0.04	0.19	719	-0.064
Hispanic	0.14	0.35	43256	0.15	0.35	719	-0.021
Pacific Islander	0.01	0.07	43257	0.00	0.05	719	0.041
Caucasian	0.70	0.46	43257	0.63	0.48	719	0.143
Male	0.50	0.50	43156	0.48	0.50	719	0.046

	N	on-Disrup	oted		Disrupte	d	
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Reading Scale	742.25	71.63	617	740.30	81.34	617	0.026
2012 Math Scale	745.58	98.78	617	739.02	96.46	617	0.067
2012 Reading Scale	736.91	99.64	617	733.21	85.08	617	0.040
School Free-Lunch	0.56	0.20	617	0.57	0.17	617	-0.046
School Achievement	740.61	24.75	617	739.55	24.79	617	0.043
African American	0.21	0.41	617	0.20	0.40	617	0.016
American Indian	0.19	0.40	617	0.21	0.41	617	-0.040
Asian	0.04	0.20	617	0.04	0.19	617	0.008
Hispanic	0.15	0.36	617	0.15	0.36	617	-0.014
Pacific Islander	0.01	0.08	617	0.00	0.06	617	0.047
Caucasian	0.64	0.48	617	0.63	0.48	617	0.034
Male	0.49	0.50	617	0.47	0.50	617	0.023

Table A9. Mean Covariate Differences for Grade 7 Reading – Cohort B

			Before	Matching			
	N	on-Disrup	oted		Disrupted		
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Math Scale	732.88	80.36	42557	722.22	86.01	424	0.128
2012 Math Scale	733.40	96.02	39757	720.21	109.55	397	0.128
2012 Reading Scale	729.22	96.80	39822	721.26	102.03	395	0.080
School Free-Lunch	0.55	0.19	40436	0.52	0.18	404	0.150
School Achievement	732.46	23.85	40416	732.63	28.40	404	-0.007
African American	0.11	0.32	43268	0.10	0.30	434	0.055
American Indian	0.23	0.42	43268	0.21	0.40	434	0.051
Asian	0.02	0.15	43268	0.02	0.13	434	0.052
Hispanic	0.13	0.34	43266	0.12	0.33	434	0.026
Pacific Islander	0.00	0.07	43268	0.01	0.08	434	-0.035
Caucasian	0.69	0.46	43268	0.76	0.43	434	-0.156
Male	0.50	0.50	43252	0.50	0.50	433	-0.007

	N	on-Disrupt	ted		Disrupted	ł	
	Mean	SD	Ν	Mean	SD	N	Cohen's d
2013 Math Scale	721.38	84.57	369	728.33	82.75	369	-0.083
2012 Math Scale	721.03	100.50	369	722.94	110.59	369	-0.018
2012 Reading Scale	721.72	110.46	369	721.48	102.69	369	0.002
School Free-Lunch	0.51	0.20	369	0.52	0.18	369	-0.031
School Achievement	732.72	23.51	369	732.57	28.85	369	0.006
African American	0.10	0.30	369	0.09	0.29	369	0.028
American Indian	0.19	0.39	369	0.21	0.40	369	-0.041
Asian	0.01	0.09	369	0.02	0.13	369	-0.075
Hispanic	0.14	0.35	369	0.13	0.34	369	0.039
Pacific Islander	0.00	0.05	369	0.01	0.09	369	-0.076
Caucasian	0.77	0.42	369	0.78	0.42	369	-0.019
Male	0.48	0.50	369	0.50	0.50	369	-0.049

Table A10. Mean Covariate Differences for Grade 7 Math – Cohort B

Disrupte SD			Disrupted		
SD					
	Ν	Mean	SD	N	Cohen's d
7.39	42436	725.55	75.69	542	0.069
5.94	39806	720.66	111.47	506	0.122
6.99	39510	720.96	104.39	501	0.083
.19	41088	0.63	0.13	502	-0.517
3.92	41068	720.38	27.21	502	0.448
.32	43178	0.15	0.36	550	-0.114
.42	43178	0.21	0.40	550	0.048
.15	43178	0.03	0.17	550	-0.037
.34	43178	0.23	0.42	550	-0.271
.07	43178	0.00	0.04	550	0.046
.46	43178	0.69	0.46	550	0.007
-					
)	.32 .42 .15 .34	.32 43178 .42 43178 .15 43178 .34 43178 .07 43178	.32 43178 0.15 .42 43178 0.21 .15 43178 0.03 .34 43178 0.23 .07 43178 0.00	.32 43178 0.15 0.36 .42 43178 0.21 0.40 .15 43178 0.03 0.17 .34 43178 0.23 0.42 .07 43178 0.00 0.04	.32

	N	on-Disrup	ted		Disrupted	ł	
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Reading Scale	727.78	66.09	455	731.12	73.73	455	-0.048
2012 Math Scale	719.35	113.09	455	724.81	105.35	455	-0.050
2012 Reading Scale	720.98	100.63	455	723.56	96.83	455	-0.026
School Free-Lunch	0.62	0.17	455	0.64	0.13	455	-0.094
School Achievement	721.78	25.97	455	720.23	26.76	455	0.059
African American	0.14	0.35	455	0.17	0.37	455	-0.079
American Indian	0.19	0.39	455	0.19	0.40	455	-0.017
Asian	0.04	0.20	455	0.03	0.17	455	0.048
Hispanic	0.33	0.47	455	0.26	0.44	455	0.160
Pacific Islander	0.00	0.00	455	0.00	0.05	455	-0.094
Caucasian	0.69	0.46	455	0.67	0.47	455	0.042
Male	0.48	0.50	455	0.49	0.50	455	-0.018

Table A11. Mean Covariate Differences for Grade 8 Reading - Cohort B

			Before	Matching			
	N ₁	on-Disrup	ted		Disrupted		
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Math Scale	731.06	83.17	41404	732.58	91.92	615	-0.017
2012 Math Scale	734.45	97.53	38615	730.06	98.97	577	0.045
2012 Reading Scale	737.27	91.09	38817	732.36	102.29	581	0.051
School Free-Lunch	0.52	0.20	39393	0.55	0.16	587	-0.165
School Achievement	736.76	24.34	39393	738.05	26.04	587	-0.051
African American	0.11	0.31	42280	0.17	0.38	630	-0.178
American Indian	0.22	0.42	42280	0.19	0.39	630	0.089
Asian	0.02	0.15	42280	0.03	0.18	630	-0.056
Hispanic	0.13	0.33	42277	0.16	0.37	630	-0.104
Pacific Islander	0.00	0.07	42280	0.01	0.11	630	-0.089
Caucasian	0.69	0.46	42280	0.66	0.47	630	0.077
Male	0.50	0.50	42253	0.47	0.50	629	0.058

		, ator matering								
	N	on-Disrup	ted		Disrupted	t				
	Mean	SD	N	Mean	SD	Ν	Cohen's d			
2013 Math Scale	745.03	84.42	543	737.56	92.54	543	0.084			
2012 Math Scale	740.94	99.16	543	731.78	99.41	543	0.092			
2012 Reading Scale	739.54	100.90	543	734.72	102.88	543	0.047			
School Free-Lunch	0.55	0.20	543	0.55	0.16	543	-0.012			
School Achievement	740.80	27.80	543	738.86	26.29	543	0.072			
African American	0.16	0.37	543	0.17	0.38	543	-0.025			
American Indian	0.21	0.41	543	0.19	0.39	543	0.046			
Asian	0.02	0.14	543	0.03	0.18	543	-0.081			
Hispanic	0.14	0.35	543	0.16	0.37	543	-0.067			
Pacific Islander	0.01	0.10	543	0.01	0.10	543	0.000			
Caucasian	0.67	0.47	543	0.66	0.47	543	0.027			
Male	0.49	0.50	543	0.47	0.50	543	0.048			

Table A12. Mean Covariate Differences for Grade 8 Math – Cohort B

			Before	Matching			
	N	on-Disrup	ted		Disrupte	d	
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Reading Scale	750.75	82.06	40960	745.13	78.98	1062	0.070
2012 Math Scale	734.53	97.66	38272	725.10	97.69	1000	0.097
2012 Reading Scale	737.56	91.71	38044	732.04	80.73	994	0.064
School Free-Lunch	0.53	0.20	39641	0.60	0.20	1022	-0.349
School Achievement	736.32	24.58	39641	724.72	23.27	1022	0.485
African American	0.11	0.31	41647	0.16	0.37	1078	-0.142
American Indian	0.22	0.42	41647	0.20	0.40	1078	0.059
Asian	0.02	0.15	41647	0.01	0.12	1078	0.062
Hispanic	0.13	0.33	41647	0.19	0.39	1078	-0.171
Pacific Islander	0.00	0.07	41647	0.01	0.09	1078	-0.033
Caucasian	0.69	0.46	41647	0.67	0.47	1078	0.060
Male	0.50	0.50	41637	0.50	0.50	1076	-0.005

	N	on-Disrup	ted		Disrupte	d	_
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
2013 Reading Scale	750.33	86.83	932	749.99	77.36	932	0.004
2012 Math Scale	724.17	107.83	932	725.62	95.75	932	-0.014
2012 Reading Scale	729.19	95.85	932	733.32	80.97	932	-0.047
School Free-Lunch	0.60	0.19	932	0.60	0.20	932	0.034
School Achievement	724.72	25.69	932	724.47	23.17	932	0.010
African American	0.17	0.38	932	0.17	0.37	932	0.011
American Indian	0.16	0.37	932	0.19	0.40	932	-0.084
Asian	0.02	0.14	932	0.02	0.13	932	0.032
Hispanic	0.20	0.40	932	0.20	0.40	932	0.011
Pacific Islander	0.00	0.06	932	0.01	0.08	932	-0.047
Caucasian	0.68	0.47	932	0.66	0.47	932	0.043
Male	0.47	0.50	932	0.49	0.50	932	-0.043

Table A13. Mean Covariate Differences for 2013 Algebra - Cohort C

			Before	Matching			
	N	on-Disrup	oted		Disrupte	d	_
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
Predicted Disruption	0.07	0.01	30721	0.07	0.02	2179	-0.218
Algebra Scale	746.45	50.08	31021	739.28	50.20	2196	0.143
2012 Math Scale	745.28	91.82	31021	736.73	98.00	2196	0.090
2012 Reading Scale	761.30	87.63	30804	755.68	89.18	2181	0.064
School Free-Lunch	0.47	0.13	30941	0.46	0.14	2195	0.033
School Achievement	752.89	29.75	30941	750.51	30.65	2195	0.079
African American	0.10	0.30	31021	0.13	0.33	2196	-0.081
American Indian	0.20	0.40	31021	0.22	0.41	2196	-0.049
Asian	0.03	0.16	31021	0.02	0.15	2196	0.023
Hispanic	0.00	0.00	31021	0.00	0.00	2196	0.000
Pacific Islander	0.01	0.08	31021	0.00	0.06	2196	0.047
Caucasian	0.68	0.46	31021	0.64	0.48	2196	0.086
Male	0.49	0.50	31018	0.47	0.50	2195	0.048
			After N	/latching			

Non-Disrupted Disrupted Mean SD Ν Mean SD Ν Cohen's d **Predicted Disruption** 0.07 0.02 2179 0.07 0.02 2179 -0.005 744.67 49.41 2179 739.55 50.17 Algebra Scale 2179 0.103 2012 Math Scale 741.35 95.62 2179 737.50 96.85 2179 0.040 2012 Reading Scale 757.07 94.64 2179 755.75 89.15 2179 0.014 School Free-Lunch 0.45 0.14 0.46 0.14 2179 2179 -0.067 School Achievement 752.48 32.20 2179 750.52 30.73 2179 0.062 African American 0.13 0.34 2179 0.13 0.33 2179 0.012 American Indian 0.22 2179 0.22 0.42 0.41 2179 0.009 Asian 2179 0.02 0.03 0.17 0.15 2179 0.037 0.00 0.00 2179 0.00 0.00 Hispanic 2179 0.000 Pacific Islander 0.00 0.06 2179 0.00 0.06 2179 0.000 Caucasian 0.64 0.48 2179 0.64 0.48 2179 -0.006 Male 0.49 0.50 2179 0.47 0.50 2179 0.035

Table A14. Mean Covariate Differences for 2013 Algebra (7th & 8th) - Cohort C

			Before	Matching	-		
	No	on-Disrup	ted		Disrupte	d	
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
Predicted Disruption	0.07	0.03	8632	0.08	0.03	621	-0.345
Algebra Scale	775.49	47.84	9077	763.11	55.51	648	0.240
2012 Math Scale	810.83	65.01	8738	799.77	71.70	622	0.162
2013 Math Scale	802.69	69.26	9077	791.65	75.09	648	0.153
2013 Read Scale	806.86	67.91	9050	799.37	73.35	648	0.106
African American	0.09	0.29	9077	0.10	0.30	648	-0.023
American Indian	0.17	0.37	9077	0.19	0.40	648	-0.074
Asian	0.05	0.23	9077	0.04	0.21	648	0.042
Caucasian	0.75	0.43	9077	0.71	0.45	648	0.091
Hispanic	0.10	0.29	9077	0.07	0.26	648	0.082
Pacific Islander	0.00	0.07	9077	0.00	0.04	648	0.059
Free Lunch	0.33	0.47	9077	0.41	0.49	648	-0.152
Grade	7.89	0.32	9077	7.91	0.29	661	-0.084
School FRL Proportion	0.33	0.15	8991	0.35	0.16	647	-0.098
School Achievement	804.81	17.56	8991	799.35	22.83	647	0.270
Male	0.49	0.50	9076	0.46	0.50	648	0.057

	Non-Disrupted						
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
Predicted Disruption	0.08	0.03	621	0.08	0.03	621	0.001
Algebra Scale	771.51	48.81	621	763.50	55.45	621	0.154
2012 Math Scale	798.61	89.06	621	800.07	71.36	621	-0.018
2013 Math Scale	795.61	71.39	621	792.02	74.68	621	0.049
2013 Read Scale	804.61	70.84	621	800.23	73.21	621	0.061
African American	0.08	0.27	621	0.10	0.29	621	-0.057
American Indian	0.20	0.40	621	0.20	0.40	621	0.012
Asian	0.05	0.22	621	0.05	0.21	621	0.015
Caucasian	0.71	0.45	621	0.71	0.45	621	-0.007
Hispanic	0.07	0.25	621	0.07	0.26	621	-0.025
Pacific Islander	0.00	0.04	621	0.00	0.04	621	0.000
Free Lunch	0.41	0.49	621	0.40	0.49	621	0.007
Grade	7.92	0.27	621	7.91	0.28	621	0.023
School FRL Proportion	0.33	0.15	621	0.35	0.15	621	-0.099
School Achievement	801.66	20.94	621	799.72	22.11	621	0.090
Male	0.45	0.50	621	0.46	0.50	621	-0.019

Table A15. Mean Covariate Differences for 2013 English Group 1 – Cohort D

Before Matching								
	N	on-Disrup	oted	Disrupted				
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d	
Predicted Disruption	0.05	0.02	7991	0.06	0.03	427	-0.377	
2013 English	761.18	71.68	35702	756.61	69.93	3113	0.065	
2013 History Scale	706.90	98.52	7995	693.56	96.85	431	0.137	
School Free-Lunch	0.46	0.09	35700	0.46	0.07	3112	0.060	
African American	0.11	0.31	35702	0.10	0.30	3113	0.027	
American Indian	0.20	0.40	35702	0.17	0.38	3113	0.078	
Asian	0.03	0.17	35702	0.02	0.15	3113	0.044	
Hispanic	0.00	0.00	35702	0.00	0.00	3113	0.000	
Pacific Islander	0.01	0.09	35702	0.01	0.08	3113	0.037	
Caucasian	0.67	0.47	35702	0.54	0.50	3113	0.280	
Male	0.49	0.50	35696	0.49	0.50	3108	-0.007	

	Non-Disrupted						
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
Predicted Disruption	0.06	0.03	427	0.06	0.03	427	-0.025
2013 English	746.11	73.47	427	748.36	74.80	427	-0.030
2013 History Scale	692.31	95.73	427	694.80	96.44	427	-0.026
School Free-Lunch	0.46	0.09	427	0.45	0.06	427	0.087
African American	0.13	0.33	427	0.11	0.31	427	0.058
American Indian	0.21	0.41	427	0.23	0.42	427	-0.045
Asian	0.03	0.17	427	0.02	0.14	427	0.076
Hispanic	0.00	0.00	427	0.00	0.00	427	0.000
Pacific Islander	0.02	0.14	427	0.01	0.12	427	0.054
Caucasian	0.56	0.50	427	0.57	0.50	427	-0.009
Male	0.48	0.50	427	0.49	0.50	427	-0.033

Table A16. Mean Covariate Differences for 2013 English Group 2 – Cohort D

Before Matching							
	N	on-Disrup	ted	Disrupted			
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
Predicted Disruption	0.08	0.04	30130	0.12	0.10	2688	-0.595
2013 English Scale	761.18	71.68	35702	756.61	69.93	3113	0.065
2011 Reading Scale	704.12	171.71	30134	709.98	167.72	2692	-0.035
2011 Math Scale	721.04	108.29	30134	724.22	104.05	2692	-0.030
African American	0.11	0.31	35702	0.10	0.30	3113	0.027
American Indian	0.20	0.40	35702	0.17	0.38	3113	0.078
Asian	0.03	0.17	35702	0.02	0.15	3113	0.044
Caucasian	0.67	0.47	35702	0.54	0.50	3113	0.280
Hispanic	0.00	0.00	35702	0.00	0.00	3113	0.000
Pacific Islander	0.01	0.09	35702	0.01	0.08	3113	0.037
Free Lunch	0.47	0.50	35702	0.38	0.49	3113	0.176
Male	0.49	0.50	35696	0.49	0.50	3108	-0.007

ΔttΔr	Natchina	
	Matching	

	Non-Disrupted			-			
	Mean	SD	Ν	Mean	SD	Ν	Cohen's d
Predicted Disruption	0.12	0.10	2688	0.12	0.10	2688	-0.001
2013 English Scale	765.24	67.92	2688	763.56	64.10	2688	0.025
2011 Reading Scale	708.85	165.13	2688	710.03	167.59	2688	-0.007
2011 Math Scale	726.26	97.85	2688	724.43	103.74	2688	0.018
African American	0.10	0.30	2688	0.09	0.29	2688	0.029
American Indian	0.18	0.39	2688	0.18	0.38	2688	0.004
Asian	0.02	0.14	2688	0.02	0.13	2688	0.014
Caucasian	0.53	0.50	2688	0.55	0.50	2688	-0.028
Hispanic	0.00	0.00	2688	0.00	0.00	2688	0.000
Pacific Islander	0.01	0.08	2688	0.00	0.07	2688	0.025
Free Lunch	0.39	0.49	2688	0.37	0.48	2688	0.044
Male	0.50	0.50	2688	0.49	0.50	2688	0.021