OKLAHOMA SCHOOL TESTING PROGRAM

$$
\text { 2016-2017 GRADE } 3
$$

Oklahoma School Testing Program Test and Item Specifications 1
Purpose 1
Test Structure, Format, and Scoring 2
Test Alignment with Oklahoma Academic Standards 2
Test Blueprint 3
Depth-of-Knowledge Assessed by Test Items 4
Universal Design Considerations 4
Testing Schedules 5
Item Types 5
Multiple-Choice Item Guidelines 5
Stimulus Materials 6
General Considerations-Oklahoma School Testing Program 7
Considerations Specific to the Grade 3 Mathematics Test 8
Overview of Item Specifications 9
Standards \& Sample Items 10
OAS Strand—Number \& Operations (N): Standard 3.N.1 11
OAS Strand—Number \& Operations (N): Standard 3.N. 2 14
OAS Strand—Number \& Operations (N): Standard 3.N. 3 17
OAS Strand-Number \& Operations (N): Standard 3.N. 4 19
OAS Strand—Algebraic Reasoning \& Algebra (A): Standard 3.A. 1 21
OAS Strand—Algebraic Reasoning \& Algebra (A): Standard 3.A. 2 23
OAS Strand—Geometry \& Measurement (GM): Standard 3.GM. 1 26
OAS Strand—Geometry \& Measurement (GM): Standard 3.GM. 2 29
OAS Strand—Geometry \& Measurement (GM): Standard 3.GM. 3 32
OAS Strand—Data \& Probability (D): Standard 3.D. 1 34

[^0]
OKLAHOMA SCHOOL TESTING PROGRAM TEST AND ITEM SPECIFICATIONS

Grade 3 Mathematics Test

Purpose

The purpose of the Grade 3 test is to measure Oklahoma students' levels of proficiency over the Oklahoma Academic Standards. Students are required to respond to a variety of items that assess identified content strands and standards outlined in the Grade 3 Test Blueprint.

Test Structure, Format, and Scoring

The Grade 3 Mathematics test will consist of 50 operational items and 10 field-test items, written at a reading level about one grade level below a Grade 3 audience, and includes four responses from which to choose: the correct answer and three distractors. The total 60 items will be divided into two test sections.

Each item is scored as correct or incorrect. Only operational items contribute to the total test score. Thus, for example, if a test contains 50 operational items, only those 50 items (not the 10 field-test items) contribute to a student's scaled score on the test.

The student's raw score is converted to a scaled score using the number correct scoring method.

Test Alignment with Oklahoma Academic Standards

Criteria for Aligning the Test with the Oklahoma Academic Standards Content Strands and Standards

1. Categorical Concurrence

The test is constructed so that there are at least five items measuring each OAS strand. The number of items, six, is based on estimating the number of items that could produce a reasonably reliable estimate of a student's mastery of the content measured.
2. Range-of-Knowledge Correspondence

The test is constructed so that every standard for each OAS strand has at least one corresponding assessment item.

3. Source of Challenge

Each test item is constructed in such a way that the major cognitive demand comes directly from the targeted OAS strand or standard being assessed, not from specialized knowledge or cultural background that the test-taker may bring to the testing situation.

OKLAHOMA SCHOOL TESTING PROGRAM

TEST BLUEPRINT MATHEMATICS 2016-2017 GRADE 3

This blueprint describes the content and structure of an assessment and defines the ideal number of test items by strand and standard of the Oklahoma Academic Standards (OAS).
IDEAL \%
OF ITEMS
46\% 23

6116
7
$12 \% \quad 6$
6
7

100\%
IDEAL \# OF ITEMS

23

11
6
7

$$
7
$$

28\%

$$
14
$$

$$
7
$$

6
-

DATA AND PROBABILITY
3.D. 1 Data Analysis

50 TOTAL
(Please note this blueprint does not include items that may be field-tested.) A minimum of 6 items is required to report a standard.

Depth-of-Knowledge Assessed by Test Items

The Grade 3 test will approximately reflect the following "depth-of-knowledge (DOK)" distribution of items:

Depth-of-Knowledge	Percent of Items
Level 1-Recall and Reproduction	$40-50 \%$
Level 2-Skills and Concepts	$45-55 \%$
Level 3-Strategic Thinking	$5-10 \%$

DOK Ranges are based on the DOK of the new OAS standards. The standards increase grade-level expectations, increase rigor, and set the expectation for students to be college- and career-ready.

- Level 1 (Recall and Reproduction) requires the student to recall facts, terms, definitions, or simple procedures, perform simple algorithms or apply formulas. One-step, well-defined, or straight algorithmic procedures should be included at this level.
- Level 2 (Skills and Concepts) requires the student to make some decisions as to how to approach the problem or activity. Level 2 activities include making observations and collecting data; classifying, comparing, and organizing data; and organizing and displaying data in tables, charts, and graphs.
- Level 3 (Strategic Thinking) requires reasoning, planning, using evidence, and a higher level of thinking. Level 3 activities include making conjectures, drawing conclusions from observations, citing evidence and developing a logical argument for concepts, explaining phenomena in terms of concepts, and using concepts to solve nonroutine problems.
- Level 4 (Extended Thinking) requires complex reasoning, planning, developing, and thinking most likely requiring an extended amount of time. The cognitive demands of the item should be high and the work should be very complex. Students are required to make several connections (relate ideas within the content area or among content areas) and have to select one approach among many alternatives on how the situation should be solved in order to be at this highest level.

Note: These descriptions are adapted from Review Background Information and Instructions, Standards and Assessment Alignment Analysis, CCSSO TILSA Alignment Study, May 21-24, 2001, Version 2.0. For an extended description of each depth-of-knowledge level, see the web site at http://facstaff.wcer.wisc.edu/normw/TILSA/INFO and INSTR Align Anal 513.pdf

Universal Design Considerations

Universal Design, as applied to assessments, is a concept that allows the widest possible range of students to participate in assessments and may even reduce the need for accommodations and alternative assessments by expanding access to the tests themselves. In the Oklahoma Grade 3 tests, modifications have been made to some items to simplify and clarify instructions as well as to provide maximum readability, comprehensibility, and legibility. This includes such things as reducing the language load in content areas other than Language Arts, increasing the font size, displaying fewer items per page, and boxing the items to assist visual focus.

Testing Schedules

This section appears in all of the test specification documents and is provided to give the reader a general sense of the overall testing program at this particular grade level.

Each Grade 3 test is meant to be administered in two sessions within one day with a break given between sessions or on consecutive days. Estimated time for scheduling purposes is given in the table below.

Section 1 Grade 3 Mathematics Test Time Schedule

Distributing Grade 3 Mathematics Test Booklets, reading directions	Approximately 15 minutes
Administering the Mathematics Test	$30-40$ minutes
Total:	$45-55$ minutes
Section 2 Grade 3 Mathematics Test Time Schedule	
Distributing Grade 3 Mathematics Test Booklets, reading directions	Approximately 15 minutes
Administering the Mathematics Test	$30-40$ minutes
Total:	$45-55$ minutes

Item Types

The test will consist of multiple choice items.
Most stems are positively worded—avoiding the use of the word "not." If a negative is required, it is underlined for emphasis (e.g., if a bag has the same number of red, blue, and black marbles, what is the probability that a marble randomly selected from the bag is not red?).

Multiple-Choice Item Guidelines

- All items must clearly indicate what is expected in a response and direct students to focus on their responses.
- Each multiple-choice item has a stem (question, statement, and/or graphic component) and four answer options-the correct answer and three distractors. Distractors will be developed based on the types of errors students are most likely to make.
- Multiple-choice item stems ask a question or pose a clear problem so that students will know what to do before looking at the answer choices. Students should not need to read all answer choices before knowing what is expected. A stem will seldom include an incomplete sentence.

Stimulus Materials

Stimulus materials are the tables, charts, graphs, passages, and illustrations students must use in order to respond to items. The following characteristics are necessary for stimulus materials:

1. A stimulus that gives information must precede a question or a set of questions.
2. When students are given information to evaluate, they should know the question and the purpose of the information.
3. Passages, graphics, tables, etc., provide sufficient information for assessment of multiple objectives.
4. Stimulus materials for a set of items may be a combination of multiple stimuli.
5. Information in stimulus materials is based on situations students would encounter in or beyond school.
6. For conceptual items, stimulus materials are necessary but not conceptually sufficient for student response.
7. There is a balance of graphic and textual stimulus materials within a test form. Approximately 50 percent of the items will have appropriate pictorial or graphical representations. Graphs, tables, or figures are clearly associated with their intended items. Graphics appear either on the same page as the stimulus or on the facing page.

General Considerations-Oklahoma School Testing Program

1. Items deal with issues and details that are of consequence in the stimulus and central to students' understanding and interpretation of the stimulus.
2. Test items are varied and address all OAS standards listed in the Test Blueprint.
3. To the greatest extent possible, no item or response choice clues the answer to any other item.
4. All items reviewed and approved by the Oklahoma Item Review Committee are assigned an OAS strand, standard and/or objective. The Test Blueprints and score reports reflect the degree to which each OAS strand and standard is represented on the test.
5. Test items are tied closely and particularly to the stimuli from which they derive, so that the impact of outside (prior) knowledge, while never wholly avoidable, is minimized.
6. Each multiple-choice item contains a question and four answer options, only one of which is correct. Correct answers will be approximately equally distributed among $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D responses.
7. The four choices are approximately the same length, have the same format, and are syntactically and semantically parallel; students should not be able to rule out a wrong answer or identify a correct response solely because it looks different from the other answer choices.
8. Distractors adopt the language and sense of the material in the stimuli so that students must think their way to the correct answer rather than simply identify incorrect responses by virtue of a distractor's obviously inappropriate nature.
9. Distractors should always be plausible (but, of course, incorrect) in the context of the stimulus.
10. Order of presentation of item types is dictated by logic (chronologically, spatially, etc.).
11. Items are worded precisely and clearly. The better focused an item, the more reliable and fair it is certain to be, and the more likely all students will understand it in the same way.
12. The range of items measuring an OAS standard consisting of more than one skill will provide a balanced representation of those skills.
13. Items should be focused on what all students should know and be able to do as they complete their Grade 3 coursework.
14. The responses "Both of the above," "All of the above," "None of the above," and "Neither of the above" will not be used.
15. The material presented is balanced, culturally diverse, well written, and of interest to Grade 3 test level students. The stimuli and items are fairly presented in order to gain a true picture of students' skills.
16. Across all forms, a balance of gender and active/passive roles by gender is maintained.
17. Forms attempt to represent the ethnic diversity of Oklahoma students.
18. Calculators, formula sheets, and other resource materials may not be used on the Grade 3 Mathematics test. More information regarding the calculator policy can be found at http://sde.ok.gov/sde/assessment-administrator-resources-administrators.
19. The stimuli avoid subject matter that might prompt emotional distress on the part of the students.
20. Permission to use stimuli from copyrighted material is obtained as necessary by testing vendor.

Considerations Specific to the Grade 3 Mathematics Test

It is necessary to create test items that are reliable, fair, and targeted to the Oklahoma Academic Standards listed on the following pages. There are some general considerations and procedures for effective item development.

These considerations include, but are not limited to, the following:

1. Each test form contains items assessing all content standards.
2. Test items that assess each standard are not limited to one particular type of response format.
3. Test questions attempt to focus on content that is authentic and that Grade 3 level students can relate to and understand.
4. Test items are worded precisely and clearly. The better focused an item, the more reliable and fair it is likely to be, and the more likely all students will understand what is required of them.
5. All items are reviewed to eliminate language that shows bias or that would otherwise likely disadvantage a particular group of students. That is, items do not display unfair representations of gender, race, ethnicity, disability, culture, or religion; nor do items contain elements that are offensive to any such groups.
6. All test items and answer choices have appropriate labels and units.
7. Most graphs are placed on a gray grid, with the horizontal and vertical axes labeled and marked.
[^1]
Overview of Item Specifications

For each OAS strand, item specifications are organized under the following headings:

- OAS Strand
- OAS Standard
- OAS Objectives
- Item Specifications
a. Emphasis
b. Stimulus Attributes
c. Format
d. Content Limits
e. Primary Process Standard(s)
f. Distractor Domain
g. Sample Test Items

The headings "OAS Strands" and "OAS Standards" state the OAS strand followed by the OAS standard being measured in the mathematics section of the Oklahoma Academic Standards document.

For each standard, the information under the heading "Item Specifications" highlights important points about a test item's emphasis, format, content limits, and distractor domain. Sample test items are provided with each strand to illustrate these specifications. Although it is sometimes possible to score single items for more than one concept, all items in these tests are written to address a single standard as the primary concept.

Note: With the exception of content limits, the Item Specifications offer suggestions of what might be included and do not provide an exhaustive list of what can be included. For this reason, Item Specifications are only meant to be a supplemental resource for classroom instruction.

In addition, the sample test items are not intended to be definitive in nature or construction-the stimuli and the test items that follow them may differ from test form to test form, as may their presentations. Sample test items are not intended to predict a student's performance on the actual test, but rather to allow students to familiarize themselves with the item types and formats that they may see on the test.

STANDARDS \& SAMPLE ITEMS

OAS STRAND-NUMBER \& OPERATIONS (N): STANDARD 3.N. 1

	3.N. 1	Compare and represent whole numbers up to 100,000 with an emphasis on place value and equality.
	3.N.1.1	Read, write, discuss, and represent whole numbers up to 100,000. Representations may include numerals, expressions with operations, words, pictures, number lines, and manipulatives.
	3.N.1.2	Use place value to describe whole numbers between 1,000 and 100,000 in terms of ten thousands, thousands, hundreds, tens, and ones, including expanded form.
	3.N.1.3	Find 10,000 more or 10,000 less than a given five-digit number. Find 1,000 more or 1,000 less than a given four- or five-digit number. Find 100 more or 100 less than a given four- or five-digit number.
	3.N.1.4	Use place value to compare and order whole numbers up to 100,000 , using comparative language, numbers, and symbols.

Emphasis:

- Represent whole numbers up to 100,000 .
- Use place value to describe whole numbers between 1,000 and 100,000 .
- Find 10,000 more or 10,000 less than a given five-digit number; find 1,000 more or 1,000 less than a given four- or five-digit number; and find 100 more or 100 less than a given four- or five-digit number.
- Compare and order whole numbers up to 100,000.

Stimulus Attributes:

- Test items may include numerals, expressions with operations, words, base-10 blocks, bundles of 10, place value mats, number lines, pictures, and drawings.

Format:

- Select a whole number through six digits from a model
- Select a model of a whole number through six digits
- Identify equivalent representations of a whole number, including expanded form
- Identify relationship between two or more whole numbers as greater than ($>$), less than ($<$), or equal to (=)
- Order whole numbers in ascending or descending order
- Find 10,000 more, 1,000 more, or 100 more than a given number
- Find 10,000 less, 1,000 less, or 100 less than a given number

Content Limits:

- Limit whole numbers to the hundred-thousands place
- Limit numbers to whole numbers
- Limit representations to standard form, expanded form, written form, or models
- Limit ordering to three numbers
- Addition and subtraction limited to finding 10,000 more or less than a given five-digit number or finding 1,000 or 100 more or 1,000 or 100 less than a given four- or five-digit number

STANDARD 3.N. 1 continued

Primary Process Standards:

- Develop Strategies for Problem Solving
- Develop the Ability to Communicate Mathematically
- Develop Mathematical Reasoning
- Develop a Deep and Flexible Conceptual Understanding
- Develop the Ability to Make Conjectures, Model, and Generalize

Distractor Domain:

- Misrepresentation of place value
- Computational error
- Predictable misrepresentation of digits
- Incorrect value for a digit
- Failure to establish correspondence between the appropriate model and its numerical or symbolic representation
- Misinterpretation of symbols
- Regrouping errors

1 The distance between Washington, D.C., and Oklahoma City is about one thousand, three hundred, twenty miles. How is this distance written in numerals?

A 132 miles
B 1,032 miles
C 1,302 miles
D 1,320 miles

Correct Response: D
Depth-of-Knowledge: 1

2 Which number could be placed in the blank to make the number sentence true?

$$
5,426>?
$$

A 5,430
B 5,617
C 5,584
D 5,418

Correct Response: D
Depth-of-Knowledge: 1

OAS STRAND—NUMBER \& OPERATIONS (N): STANDARD 3.N. 2

	3.N. 2	Add and subtract multi-digit whole numbers; multiply with factors up to 10 ; represent multiplication and division in various ways; solve real-world and mathematical problems through the representation of related operations.
	3.N.2.1	Represent multiplication facts by using a variety of approaches, such as repeated addition, equal-sized groups, arrays, area models, equal jumps on a number line, and skip counting.
	3.N.2.2	Demonstrate fluency of multiplication facts with factors up to 10 .
	3.N.2.3	Use strategies and algorithms based on knowledge of place value and equality to fluently add and subtract multi-digit numbers.
	3.N.2.4	Recognize when to round numbers and apply understanding to round numbers to the nearest ten thousand, thousand, hundred, and ten, and use compatible numbers to estimate sums and differences.
	3.N.2.5	Use addition and subtraction to solve real-world and mathematical problems involving whole numbers. Use various strategies, including the relationship between addition and subtraction, the use of technology, and the context of the problem to assess the reasonableness of results.
	3.N.2.6	Represent division facts by using a variety of approaches, such as repeated subtraction, equal sharing and forming equal groups.
	3.N.2.7	Recognize the relationship between multiplication and division to represent and solve real-world problems.
	3.N.2.8	Use strategies and algorithms based on knowledge of place value, equality and properties of addition and multiplication to multiply a two-digit number by a onedigit number.
	Emphasis:	
	- Represent multiplication and division facts by using a variety of approaches. - Demonstrate fluency of multiplication facts with factors up to 10. - Fluently add and subtract multi-digit numbers. - Use rounding to estimate sums and differences. - Use addition and subtraction to solve real-world and mathematical problems involving whole numbers. - Recognize the relationship between multiplication and division to represent and solve real-world problems. - Multiply a two-digit number by a one-digit number.	
	- Test items may include repeated addition, arrays, area models, equal jumps on a number line, tables, pictures, counters, other counting manipulatives, drawings, and graphs.	

STANDARD 3.N. 2 continued

Format:

- Identify the multiplication fact represented by a model
- Identify the correct multiplication algorithm
- Identify and extend multiplication and division patterns
- Solve multiplication and division problems
- Identify the missing fact in a fact family
- Fluently add and subtract multi-digit whole numbers
- Solve application problems by adding and subtracting multi-digit whole numbers
- Solve application problems by rounding and then adding or subtracting
- Fluently multiply with factors up to 10
- Model division facts
- Use strategies to multiply a two-digit number by a one-digit number

Content Limits:

- Limit to product of 2-digit number by 1-digit number
- For fluency, limit to multiplication facts with factors up to 10
- Limit to whole numbers
- Limit multiplication facts and associated division facts up to 10×10
- For addition and subtraction, limit to three- and four-digit numbers
- For estimations, limit to numbers up to 5 digits

Primary Process Standards:

- Develop Strategies for Problem Solving
- Develop the Ability to Communicate Mathematically
- Develop Mathematical Reasoning
- Develop a Deep and Flexible Conceptual Understanding
- Develop the Ability to Make Conjectures, Model, and Generalize

Distractor Domain:

- Computational errors
- Misidentification of multiplication pattern
- Misidentification of division facts
- Misidentification of model or algorithm
- Regrouping errors
- Rounding errors

To the nearest ten, about how far does the train travel from Dover to Eastside?

A 950 miles
B 1050 miles
C 1060 miles
D 1150 miles

Correct Response: B

Depth-of-Knowledge: 2

4 Three elephants at a zoo weigh a total of 9,898 pounds. One elephant weighs $\mathbf{7 , 8 5 9}$ pounds. Another elephant weighs 1,602 pounds. How many pounds does the third elephant weigh?

A 437 pounds
B 1,447 pounds
C 1,641 pounds
D 2,263 pounds

Correct Response: A

Depth-of-Knowledge: 2

OAS STRAND-NUMBER \& OPERATIONS (N): STANDARD 3.N. 3

5 What is the value of the fraction $\frac{5}{8}$?
A one fifth
B eight fifths
C one eighth
D five eighths

Correct Response: D
 Depth-of-Knowledge: 1

OAS STRAND-NUMBER \& OPERATIONS (N): STANDARD 3.N. 4

| 3.N.4 $4 \quad$ Determine the value of a set of coins or bills. |
| :--- | :--- | :--- |

6 Sarah has 27 cents in her pocket. What is the fewest number of coins that Sarah could have in her pocket?

A 3
B 4
C 5
D 7

Correct Response: A
Depth-of-Knowledge: 2

OAS STRAND-ALGEBRAIC REASONING \& ALGEBRA (A): STANDARD 3.A.1

	3.A. 1	Describe and create representations of numerical and geometric patterns.
$\begin{aligned} & \boldsymbol{M} \\ & \underset{Z}{Z} \end{aligned}$	3.A.1.1	Create, describe, and extend patterns involving addition, subtraction, or multiplication to solve problems in a variety of contexts.
$\begin{aligned} & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	3.A.1.2	Describe the rule (single operation) for a pattern from an input/output table or function machine involving addition, subtraction, or multiplication.
$\begin{aligned} & 0 \\ & 0 \\ & 8 \\ & \hline 8 \end{aligned}$	3.A.1.3	Explore and develop visual representations of growing geometric patterns and construct the next steps.

Emphasis:

- Create, extend, and describe the rules for patterns involving addition, subtraction, or multiplication to solve real-world and mathematical problems.
- Explore, develop, and extend visual representations of growing geometric patterns.

Stimulus Attributes:

- Test items may include function machines, input/output tables, lists, pictures, hundreds charts, and geometric patterns.

Format:

- Use rules to complete patterns
- Use rules to extend patterns
- Determine a rule from a table, chart, or list
- Determine a missing element in a pair of numbers by using generalizations from other pairs with the same relationship
- Determine the rule for a growing geometric pattern
- Determine the missing element in a growing geometric pattern

Content Limits:

- Limit rule to one operation
- Limit operations to addition, subtraction, and multiplication
- Limit multiplication to multiplication by 2,5 , and 10
- Limit extension of pattern to next element
- Limit to whole numbers

Primary Process Standards:

- Develop Strategies for Problem Solving
- Develop the Ability to Communicate Mathematically
- Develop Mathematical Reasoning
- Develop a Deep and Flexible Conceptual Understanding

Distractor Domain:

- Inappropriate operation selected
- Predictable misrepresentation of pattern

7 Connie is learning to play 15 songs on the piano. The table shows the number of songs Connie has left to learn at the end of each month.

Songs for Connie to Learn

Month	Number of Songs
January	15
February	13
March	11
April	9
May	$\boldsymbol{?}$

Connie learns the same number of songs each month. How many songs will Connie have left to learn at the end of May?

A 2 songs
B 6 songs
C 7 songs
D 8 songs

Correct Response: C
Depth-of-Knowledge: 2

8

Input	Output
12	5
19	12
25	18

Which rule could be used to change the input number to the output number in the table above?

A divide by 7
B multiply by 6
C add 6
D subtract 7

Correct Response: D
Depth-of-Knowledge: 2

OAS STRAND-ALGEBRAIC REASONING \& ALGEBRA (A): STANDARD 3.A. 2

| U.A.2 | Use number sentences involving multiplication and unknowns to represent and
 solve real-world and mathematical problems. |
| :--- | :--- | :--- |
| 3.A.2.1 | Find unknowns represented by symbols in arithmetic problems by solving one-step
 open sentences (equations) and other problems involving addition, subtraction, and
 multiplication. Generate real-world situations to represent number sentences.
 Recognize, represent, and apply the number properties (commutative, identity, |
| and associative properties of addition and multiplication) using models and | |
| manipulatives to solve problems. | |

Emphasis:

- Determine the value of an unknown to make a one-step open sentence true.
- Use number sentences to represent real-world situations.
- Recognize, represent, and apply the commutative, identity, and associative properties, and use them to solve problems.

Stimulus Attributes:

- Test items may include pictures, tables, counters, number lines, counting manipulatives, balances, two- and three-dimensional geometric figures, data sets, charts, and other diagrams.

Format:

- Solve a math sentence involving a single operation for an unknown quantity
- Generate real-world situations to represent number sentences.
- Identify simple examples and basic uses of the commutative, identity, and associative properties of addition and multiplication to solve mathematical problems and problems in real-world contexts
- Use the commutative, identity, and associative properties of numbers to develop computational skills
- Use a square for an unknown

Content Limits:

- Limit numbers to 2 -digit whole numbers
- Limit sentence to one operation
- Limit operation to addition, subtraction, or multiplication (for the commutative property)
- Limit properties to commutative, identity, and associative
- Limit to factors up to 10
- Limit operations to addition and multiplication (for the associative property)

STANDARD 3.A. 2 continued

Primary Process Standards:

- Develop Strategies for Problem Solving
- Develop the Ability to Communicate Mathematically
- Develop Mathematical Reasoning
- Develop a Deep and Flexible Conceptual Understanding

Distractor Domain:

- Perform incorrect operation
- Common errors
- Computational errors
- Incorrect procedures
- Incorrect use of rules or properties

9 Seth wants to visit all 50 states. He has visited 14 states. The number sentence shows, \square, the number of states Seth has left to visit.

$$
+14=50
$$

How many states does Seth have left to visit?
A 36
B 44
C 46
D 64

Correct Response: A
Depth-of-Knowledge: 2

10 Joey put pictures on his locker door as shown.

Which number sentence shows how many pictures Joey put on his locker door?

A $4 \times 1=4$
B $4 \times 0=4$
C $4+1=4$
D $4 \div 0=4$

Correct Response: A
Depth-of-Knowledge: 1

OAS STRAND-GEOMETRY \& MEASUREMENT (GM): STANDARD 3.GM. 1

3.GM. $1 \quad$ Use geometric attributes to describe and create shapes in various contexts.
•

STANDARD 3.GM. 1 continued

の	Distractor Domain:
• Misidentification of characteristics, figures, or congruency	
-	• Error in correlation of characteristics with figures
-	- Misidentification of basic figures

11

What is the total number of triangular faces on the figure?
A 2
B 3
C 5
D 6

Correct Response: A
Depth-of-Knowledge: 2

12 Which shape below appears to contain at least one acute, one obtuse, and one right angle?

A

B

C

D

Correct Response: A
Depth-of-Knowledge: 2

OAS STRAND-GEOMETRY \& MEASUREMENT (GM): STANDARD 3.GM. 2

| 3.GM.2 | Understand measurable attributes of real-world and mathematical objects using
 various tools. |
| :--- | :--- | :--- |
| 3.GM.2.1 | Find perimeter of polygon, given whole number lengths of the sides, in real-world
 and mathematical situations. |
| 3.GM.2.2 | Develop and use formulas to determine the area of rectangles. Justify why length
 and width are multiplied to find the area of a rectangle by breaking the rectangle
 into one unit by one unit squares and viewing these as grouped into rows and |
| columns. | |

STANDARD 3.GM. 2 continued

Format:

- Calculate perimeter given lengths of sides
- Use a formula to find the area of a rectangle
- Use one unit squares to create rows and columns in a rectangle to justify why length and width are multiplied to find the area of a rectangle
- Use a ruler to measure length to the nearest inch or half-inch
- Use a ruler to measure length to the nearest whole centimeter or meter
- Choose correct measurement instrument
- Use common benchmarks to estimate lengths using customary and metric units of measure
- Read temperature on a Fahrenheit or Celsius thermometer
- Calculate area by counting square units
- Determine the number of cubes needed to pack the whole or half of a three-dimensional figure

Content Limits:

- Limit lengths of sides to whole numbers
- Limit shapes to squares and rectangles or figures that can be composed of squares and rectangles
- Limit metric units of measure to whole centimeter or whole meter
- Limit customary units of measure to half-inch, inch, whole yard, whole foot
- Limit temperature readings to whole degrees

Primary Process Standards:

- Develop Strategies for Problem Solving
- Develop the Ability to Communicate Mathematically
- Develop Mathematical Reasoning
- Develop a Deep and Flexible Conceptual Understanding
- Develop the Ability to Make Conjectures, Model, and Generalize

Distractor Domain:

- Computational errors
- Use incorrect formula
- Calculate perimeter for area
- Inaccurate reading of measurement instrument
- Incorrect choice of measurement instrument
- Inaccurate reading of thermometers

13 Mrs. Steinberg's class made a design using square pieces of paper. Each piece of paper was 1 foot wide by 1 foot long. The design was a rectangle, 5 feet wide by 7 feet long. How many square pieces of paper were used to make the design?
A 12 pieces of paper
B 20 pieces of paper
C 24 pieces of paper
D 35 pieces of paper

Correct Response: D
Depth-of-Knowledge: 3

14 Jessie measured her goldfish as shown.

What is the length of Jessie's goldfish?
A 1 inch
B 3 inches
C 4 inches
D 6 inches

Correct Response: B
Depth-of-Knowledge: 2

OAS STRAND-GEOMETRY \& MEASUREMENT (GM): STANDARD 3.GM. 3

| 3.GM.3 \quad Solve problems by telling time to the nearest 5 minutes. |
| :--- | :--- | :--- |

15 This clock shows the time Jordan's music class starts.

What time does Jordan's music class start?
A 2:40
B 3:08
C $3: 40$
D 8:13

Correct Response: A
Depth-of-Knowledge: 1

16 Ann's piano practice starts at 1:30 p.m. The practice ends 55 minutes later.

What time does the practice end?
A 12:35 р.м.
B 1:25 р.м.
C 1:55 р.м.
D 2:25 Р.м.

Correct Response: D
Depth-of-Knowledge: 2

OAS STRAND-DATA \& PROBABILITY (D): STANDARD 3.D. 1

| 3.D.1 \quad Summarize, construct, and analyze data. |
| :---: | :---: |

17 The table shows the ice-cream cones sold during lunch.

Ice-Cream Cones Sold

Flavor	Number of Cones
chocolate	5
strawberry	2
vanilla	4

Which pictograph shows the same information as the table?
A Ice-Cream Cones Sold

Flavor	Number of Cones
chocolate	$\nabla \nabla \nabla \nabla \nabla$
strawberry	$\nabla \nabla$
vanilla	$\nabla \nabla \nabla \nabla$

$$
\text { Key: } \nabla=2 \text { cones }
$$

B Ice-Cream Cones Sold

Flavor	Number of Cones
chocolate	$\nabla \nabla \Gamma$
strawberry	∇
vanilla	$\nabla \nabla$

Key: $\nabla=2$ cones

C	Ice-Cream Cones Sold	
Flavor	Number of Cones	
chocolate	∇I	
strawberry	I	
vanilla	∇	

Key: $\nabla=2$ cones

D

Ice-Cream Cones Sold	
Flavor	$\begin{array}{c}\text { Number of } \\ \text { Cones }\end{array}$
chocolate	$\nabla \nabla \nabla$
strawberry	∇
vanilla	$\nabla \nabla$

Key: $\nabla=2$ cones

Correct Response: B
Depth-of-Knowledge: 2

18 The graph shows the number of students in each of four classrooms.

How many more students are in classroom L than are in classroom \mathbf{N} ?
A 3
B 4
C 5
D 7

Correct Response: A
Depth-of-Knowledge: 2

[^0]: Developed and published under contract with the Oklahoma State Department of Education by Measured Progress, 100 Education Way, Dover, New Hampshire 03820. Copyright ©2016 by the Oklahoma State Department of Education. In the absence of explicit restrictions, State of Oklahoma educators and citizens may copy, download and/or print this document, located online at https://www.measuredprogress.org/web/occt1. Any other use or reproduction of this document, in whole or in part, requires written permission of the Oklahoma State Department of Education and the publisher.

[^1]: All items developed using these specifications are reviewed annually by Oklahoma educators and approved by the Oklahoma State Department of Education. The distribution of newly developed items is based on difficulty, cognitive ability, percentage of art/graphics, and grade-level appropriateness as determined by an annual Item Development Plan approved by the Oklahoma State Department of Education.

